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      Abstract 
 

 In today’s environment of less manning, older aircraft, and a shrinking 

budget, it is imperative maintenance leaders utilize all available tactics, techniques and 

procedures to improve the amount of aircraft available for operations.  One of the 

longstanding measuring sticks to gauge a unit’s effectiveness was and still is the Mission 

Capable (MC) rate.  According to AFI 21-103, the MC rate is fully mission capable hours 

plus partial mission capable hours divided by possessed hours.  This formula provides a 

rate which is a lagging indicator of how well a unit is performing.  Although this metric is 

very valuable, it focuses more on the tactical-level of operations and does not include 

total aircraft inventory into the equation.  There’s been a major shift toward utilizing 

Aircraft Availability (AA) as the measuring stick to gauge how well the “fleet” is 

performing.  Although the concept of AA has been around for quite some time, it has 

become the reference standard utilized by senior leadership.  The ability to predict AA 

within a fleet has always been a goal of Aircraft Maintenance leaders and is now more 

important than ever with looming budget cuts across the spectrum of defense. 

This graduate research paper focuses on AA and the variables which affect this 

strategic metric.  The research will build upon previous research conducted by Captain 

Steven Oliver and Captain Frederick Fry in developing an explanatory/predictive model 

for AA encompassing the variables with the greatest influence upon this dependent 

variable to include personnel, environment, reliability and maintainability, Operations 

and Maintenance (O&M), and Aircraft and Logistics Operations.   
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PREDICTING AIRCRAFT AVAILABILITY 
 

I. Introduction 

Background 

In today’s environment of less manning, older aircraft, and a shrinking budget, it 

is imperative maintenance leaders utilize all available tactics, techniques and procedures 

to improve the amount of aircraft available for operations.  One of the longstanding 

measuring sticks to gauge a unit’s effectiveness was and still is the Mission Capable 

(MC) rate.  According to AFI 21-103 (2012:108), the MC rate is fully mission capable 

hours plus partial mission capable hours divided by possessed hours.  This formula 

provides a rate which is a lagging indicator of how well a unit is performing in Aircraft 

Maintenance Operations.  Although this metric is very valuable, it focuses more on the 

tactical-level of operations and does not include total aircraft inventory into the equation.  

Recently, there’s been a major shift toward utilizing Aircraft Availability (AA) as the 

measuring stick to understand how well the “fleet” is performing.  Although the concept 

of AA has been around for quite some time, it has become the reference standard utilized 

by senior leadership.  According to the Maintenance Metrics US Air Force Handbook 

published by the Air Force Logistics Management Agency (2009:14), maintenance 

managers will utilize AA as the yardstick to measure the health of the fleet.  The formula 

for AA is MC hours divided by the Total Aircraft Inventory hours (Maintenance Metrics 

US Air Force, 2009:31).  This lagging indicator takes into account the total time 

possessed minus depot possessed, non-mission capable for maintenance, non-mission 

capable for supply, non-mission capable for both maintenance and supply and unit 
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possessed not reported hours (Maintenance Metrics US Air Force, 2009:31).  AA has 

been the push by senior leaders as the indicator to understand how healthy and capable a 

fleet is in performing their operations.  Unfortunately, AA rates have been on the decline.  

To illustrate this point (Figure 1), John A. Tirpak, Executive Editor from the Air Force 

Magazine, wrote an article on aircraft availability in 2009 stating the following:  

 Mission Capable rates for Air Force don’t tell the whole story on platform 
availability.  Indeed, when factoring the aircraft that are in depot for routine overhauls as 
well as those that are assigned for duty, availability numbers for each aircraft type fall 
precipitously.  For example, fighter availability rates are about 58.9 percent today, down 
from a recent high of 69.2 percent in FY05.  Airlift and tanker availability rates hover 
around 60 percent range, as do those for the special operations and combat search and 
rescue platforms.   But only 44.8 percent of the bomber fleet is ready to go at any time, 
down from a peak of 57.2 in FY02.  The worst availability of any platform belongs to the 
B-2A, which is available for combat only 36.8 percent of any given time.  The most 
available platform is the MQ-1 Predator, which is ready to go at 80.6 percent of the time 
(Tirpak, 2009). 
 

 
Figure 1.  Aircraft Availability Trends (Tirpak, 2009) 
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Due to the importance of AA, there have been many initiatives to help improve 

this metric to include the Aircraft Availability Improvement Program (AAIP), a program 

focused on sharing ideas, best practices, cost reduction and total ownership costs.  In 

addition to the AAIP, there have also been predictive models developed to help ascertain 

where a particular area of support may need help (O&M budget, initial spares, depot).   

These mathematical models are also utilized to help predict or forecast where AA rates 

will be dependent on certain variables.  Most of the models developed have used the 

O&M budget and expenditures as the main variables when predicting AA.  The Aircraft 

Availability Model (AAM) is one such model.  The AAM, an analytical model and 

decision support system, was designed to relate expenditures for the procurement and 

depot repair of recoverable spares to aircraft availability rates by weapons systems.   This 

model produces curves of cost versus aircraft availability rates for a given aircraft type 

(O’Malley, 1983).  This is an incredible model developed in the early 1980s providing 

Air Force leaders the capability to forecast aircraft availability rates based on total 

expenditures for a specific weapons system.  Since the creation of the AAM, there have 

been other models created in hopes of predicting or forecasting AA rates, but most of 

them have only taken the financial side of operations into account, that is to say the O&M 

budget.  Unfortunately, there are many factors besides just the financial side of the house 

that affect AA, and need to be taken into account when trying to predict this critical 

capability.  In his 2001 thesis, Forecasting Readiness, Captain Steven Oliver identified 

five potential categories which affect AA; Personnel, Environment, Reliability and 

Maintainability, Funding and Aircraft and Logistics Operations (Oliver, 2001).  Although 

his work developed explanatory and forecasting models, it focused solely on the F-16 
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platform and wasn’t generalized as a usable model throughout the enterprise.  But, his 

research demonstrated the correlation between these variables and AA and the need to 

add them to a decision support system.   

An update to the AA model incorporating the O&M budget along with the most 

critical factors which affect AA is sorely needed. This particular subject is of high 

interest to AMC/A4.   In fact, the following is a statement focused on this issue: 

 “AMC needs to have AFMC provide a MDS by MDS AA forecast that is linked to 
mission accomplishment.  It is imperative that commanders understand what 
resources are available for mission accomplishment.  Therefore, our enterprise 
must present a fusion of actionable information/analysis at the point of 
decision.”(AMC/A4, 2012) 
 
Bottom line is the AMC/A4 community is actively pursuing a model which will 

provide an accurate prediction of AA rates with all the integral variables which affect this 

strategic metric.  This research focuses on the development of an explanatory and 

predictive model for the Airlift and Tanker community that may provide more insightful 

and usable information to better allocate resources, people and money to improve our 

readiness and mission success. 

Research Problem 

The overall problem is the lack of an AA forecasting model that incorporates all 

of the critical variables which affect AA.  Compounding this problem are the fiscal 

constraints the Air Force is currently facing, which is requiring leadership to make sound 

decisions based on actionable information.  As stated earlier, there have been many 

efforts in developing models to predict AA, but the information utilized has been based 

on expenditures, sustainment budget or spare parts lacking the other critical factors which 

affect AA.   There’s also been research on the operations side focusing on personnel, 
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operations tempo, aircraft usage but most of this research left out the budget side of the 

house. This research aims at fulfilling these AA forecasting deficiencies and arming the 

AMC Logistics Directorate with an AA model encompassing the critical correlated 

variables that affect AA and the potential ability to better assess and predict AA.   

Research Focus and Objectives 

This research will focus on mobility aircraft specifically the KC-135R active-duty 

owned aircraft and the corresponding AA rates from the past 10 years.  The objective is 

to identify the critical variables between Personnel, Environment, Reliability and 

Maintainability, Funding and Aircraft/Logistics Operations and the KC-135R AA rates.  

Additionally, this research will utilize the identified critical variables and build a multiple 

linear regression model to quantify and accurately predict the availability of KC-135R 

aircraft.  If successful, this model can be further investigated and utilized for all mobility 

aircraft. 

Investigative Questions 

In order to attain the stated objectives of this research, the following questions 

need to be addressed in an objective manner.   

1.   What is the current AMC AA standard for the KC-135R? 

2.  What is the KC-135R AA standard based off of and is it mission linked?   

3.  What quantifiable correlated variables affect the KC-135R AA rate?   

4.  Are the KC-135R AA rates influenced by changes in the O&M budget? 

5.  What model best predicts KC-135R AA and what is the result?  

In the process of answering these potential questions, highlighting future study 

areas and refining the limitations of this research will be addressed. 
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Methodology 

Since this research is building upon previous research conducted by Captain Fry 

and Captain Oliver, the methodology utilized by both gentlemen will be used for this 

research and further defined in Chapter III of this paper.  Variable correlation and 

multiple regression analysis will be utilized to investigate the collected data.  

Data Sources and Analysis 

Personnel data for this research will be retrieved from the Personnel Data 

Systems, Headquarters Air Force Manpower Data Systems and from AMC Wing 

Manpower offices.  Aircraft reliability and maintainability along with aircraft operations 

data will be collected from the Air Force’s Reliability and Maintainability Information 

Systems (REMIS) and the Logistics Installation and Mission Support Enterprise View 

(LIMS-EV) from the year 2002 to 2012 for the KC-135 platform.  Supply-related 

reliability data will be extracted from the Recoverable Consumption Item Requirements 

System (D041) and all funding data will be retrieved from AFMC and the Air Force 

Total Ownership Cost (AFTOC) database.  Each data set will be analyzed for correlation 

with AA and an explanatory model for AA will be built utilizing this data by regression 

analysis, specifically multiple regression analysis.  Regression analysis is a mathematical 

predictive tool used to show a mathematical relationship among a certain set of variables 

in order to provide a predictive response (Oliver, 2001).  Multiple linear regression is 

used for analysis when higher order terms are believed to be present or when 

combinations of more than one independent variable are included (McClave, Benson & 

Sincich, 2009).  Since this study will include numerous independent variables, multiple 

linear regression is the choice of analysis for this research.  
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Assumptions and Limitations 

Due to the amount of aircraft inventory allocated to AMC, this research is limited 

to only the KC-135R aircraft and only at the base level.  Although the scope of this 

research is limited to only one aircraft, this will provide the basis for future mobility 

aircraft research.  An additional limitation is the time frame for the data collected, which 

is from 2002 – 2012.  The assumptions are data collected is valid and accurate. 

Implications 

The visionary implication is to provide AMC leadership a tool to utilize in 

assessing what kind of impact a decrease or increase in the critical variables established 

will have on aircraft availability.  In generic terms, the ability to predict an accurate 

amount of KC-135R aircraft available due to the amount of budget allocated, personnel 

assigned, skill level possessed, current environment, reliability and maintainability 

information and current Aircraft and Logistics Operations data.  Once this model is built, 

the output data can then be utilized to make sound decisions on current and future 

operations and effective use of resources. 

Chapter Summary 

In Chapter I, AA was identified as the measuring stick to gauge the effectiveness 

of a unit and the impact to operations.  It was also established that during these fiscally 

constrained times it is imperative to utilize all the tools available to maximize our 

resources and an explanatory/predictive model of AA is one of those tools.  A wrap up of 

the chapter was conducted by establishing the objective of this paper, which is to create 

an AA predictive model incorporating all of the critical variables that affect AA.    
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The rest of the paper is outlined as follows:  Chapter II is a literature review 

covering AA, the identified variables that affect AA and forecasting models used 

throughout the years to predict AA.  The methodology exercised for this research is 

discussed in Chapter III, with data analysis and results in Chapter IV.  Finally, Chapter V 

will complete the research with conclusions and recommendations.  
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II. Literature Review 

Chapter Overview 

In order to answer the research questions and ultimately reach the objective of 

developing a predictive AA model with all the critical variables that affect AA, an 

understanding of AA is required.   First, a historical look at AA and AMC’s current AA 

standard for the KC-135 is conducted.  Next, a deeper dive into previous research 

conducted on optimizing AA to include Captain Oliver (2001) and Captain Fry’s (2010) 

thesis on this subject.  Lastly, a historical view of AA models utilized throughout the 

years to include the current models developed to help improve our readiness will wrap up 

the literature review.   

The History of AA 

AA is a metric utilized by Air Force leaders to ascertain the health of a particular 

fleet and the ability to meet the requirements across the spectrum of demands to include 

training and Combatant Commanders.  But, AA has only recently been the metric of 

choice to understand how well a fleet is performing.  The MC rate had been the 

longstanding measuring stick to gauge a unit’s effectiveness, but the MC rate focuses on 

how well a unit is performing, again more at the tactical level.  This rate is a composite 

metric, that is, a broad indicator of many processes and metrics (AFLMA, 2009:40).  

Additionally, the MC rate is a maintenance related lagging indicator.  Most metrics fall 

into one of two categories--leading and lagging indicators.  Leading indicators show a 

problem first, as they directly reflect maintenance’s capability to provide resources to 

execute the mission.  Lagging indicators show firmly established trends (AFLMA, 2009: 
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14).  A low MC rate may indicate that a unit is affected by many long fixes to their 

aircraft.  It may also indicate poor parts supportability, lack of qualified technicians, or 

poor job prioritization (AFLMA, 2009:41).   Bottom line is the MC rate (Equation 1) is 

affected by many variables, but what is AA affected by?  

 

MC = ((FMC hours + PMC Hours) / (Possessed Hours)) X 100                       (1) 

  

The AA rate (Equation 2) is a flying-related metric and is the cornerstone for 

maintenance metrics measuring the maintenance group’s ability to supply sufficient 

amount of aircraft to accomplish the mission (ALFMA, 2009:31). 

  

AA = (MC Hours) / (TAI Hours) X 100                                                              (2)  

 

In the end, the biggest difference between the AA rate and the MC rate is the 

denominator within the formula.  The AA rate takes into account the total aircraft 

inventory hours accrued for the assessed period, whereas the MC rate only takes into 

account the possessed hours accrued for the assessed period.  The AA rate formula takes 

into account the total aircraft inventory giving you a strategic view of all the assessed 

aircraft, but keep in mind the numerator within the AA rate formula is still MC hours.  So 

in saying this, it can be deducted that what affects the MC rate must affect the AA rate.  

In other words, when tactics, techniques and procedures (TTP) have been developed and 

published within maintenance pamphlets and publications to articulate what processes or 

variables a maintenance leader should be looking at when their MC rate is low, then we 
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should be utilizing the same variables and TTPs when the AA rate is below standards to 

analyze why the rate is below standard.   

In 2009 HAF/A4L initiated an AA Standards Integrated Project Team that worked 

with the Air Force Logistics Management Agency in a mission to establish and 

institutionalize a repeatable and defendable process by which lead commands will be 

required to develop AA standards that are linked to operational requirements (Waller, 

2010).  The project team developed an operational requirement equation (Equation 3) 

with three primary components; contingency hours, training hours and secondary 

requirements which is composed of ground requirements, spare requirements, alert 

requirements, and reserve requirements (Waller, 2010). 

            

                                     (3)  

                  So – Sorties required; contingency 
  St – Sorties required; training 
          F – Days available to fly 
             Tu – Turn rate 
             a – Attrition rate 
  G – Ground schedule requirements 
  S – Spare requirements 
  A – Alert requirements 
  R – Reserve and Guard requirements 
  OR – Operational Requirements 
 

The contingency component is the total number of sorties projected divided by the 

number of flying days.    For most units the operational flying day variable is 365 days.  

This represents the 24 hours, 7 day a week operational tempo seen in contingency 

operations.  If the time window requirement is less than one year, the fly days need to 
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reflect the total days for the period in question. For AMC or AFSOC, the flying day 

denominator used is 1 day.  This is due to the fact that AMC and AFSOC determines a 

daily fixed aircraft requirement for both contingency missions and training sorties versus 

number of sorties or flying hours.  For current operational norms, when one aircraft 

equals one sortie (mission), Turn rates (Tu) are set to 1 and Attrition (a) is set to 0.  This 

converts sorties per day to aircraft per day (Waller, 2010). 

The training component is the total number of sorties projected divided by the 

established scheduling parameters of the parent MAJCOM.  The flying hour programs of 

the various commands establish the requirements for flying days, programmed average 

sortie duration, turn patterns of aircraft and the training attrition rate.  The calculation of 

these variables will give the daily aircraft requirements to meet the training programs.  As 

with the operational component, most units establish a total number of flying days for the 

year, otherwise the fly days need to reflect the total days for the period in question.   For 

AMC or AFSOC, the flying day denominator used is 1 day.  As stated before, this is due 

to the fact that AMC and AFSOC determines a daily fixed aircraft requirement for both 

contingency missions and training sorties versus number of sorties or flying hours 

(Waller, 2010). 

The last component of the equation takes into account the ground requirements, 

spares needed, alert requirements and the aircraft needed for the reserve component of an 

active/reserve associated unit.  These three components summed together quantify the 

operational requirements within a unit into an amount of aircraft needed to conduct 

operations.  The operational requirement is then inputted into the AA requirement 

equation (Equation 4).  The OR number is divided by the Total Active Inventory for the 
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specific MDS of interest.  This will provide the required AA standard for the specified 

time period (Waller, 2010). 

 	           (4)  

An example of this is the B-52 operational requirements (Table 1).  Combining 

the three components of the operational requirements equation resulted in 44 aircraft 

required for operations.  The TAI of the B-52 fleet is 76 aircraft.  Dividing the 

operational requirement (44 aircraft) by the TAI (76 aircraft) results in the AA 

requirement, which is 57.7 percent.   

                Table 1.  Example of B-52 Results (Waller, 2010) 

  
          

The AA standard equation discussed above has become a requirement for each 

MAJCOM to utilize in developing their respective AA standards for each MDS they 

possess (AFI 21-103, 2012:10). 

The current AA standard for the KC-135 is 83.7 percent, which equates to 347 

aircraft required for operations out of 414 total aircraft in the inventory (AMC/A4M).  

B-52H
Tail Req contingency1 AT o

Flying Sorties contingency2 So 676
Flying Hours contingency FHo

ASD contingency ASDo 0
# Flying days contingency Fdayo 365

Turn Rate contingency T u 1
Attrition Rate contingency a 0

Tail Req trng AT t

Flying Sorties trng St 3332
Flying Hours trng FHt

ASD training ASDt 6.2
# of Flying days training Fdayt 242

Turn rate training T u 1.00
Attrition rate a 0.12

Acft req for other events G 9
Req Acft Spares S 9
Req Acft Alert A 0

Req Acft for ARC R 8.25
O R = 44

Total Active Inventory TAI 76
AAstd = OR/TAI = 57.7%
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The attainable AA rate for the KC-135 is currently 72.1 percent, which equates to 298 

aircraft and approximately 49 aircraft short of operational requirements (AMC/A4M).  

Due to the importance of AA, AMC initiated an Aircraft Availability Improvement 

Program (AAIP) with many initiatives to improve the AA rate and provide the required 

amount of aircraft for operations.   

Determining the health of the fleet and ascertaining a unit’s capabilities has 

always been a goal of leadership, whether that was through the MC rate or more currently 

the strategic view of the AA rate.  Throughout the past 20 years, there has been much 

research analyzing what factors affect the AA rate and that analysis is the foundation to 

this research.  

Previous Research on AA 

Before the AA rate was chosen as the metric of choice, Captain Steven Oliver 

analyzed what factors affect the MC rate.  The premise behind his research was the MC 

rate was a great indicator of readiness and the MC rates had fallen from all-time highs at 

the onset of the 1990s to an average of 10 percent drop across MDS by 1999 (Oliver, 

2001).  The framework was to investigate what variables affect the MC rate and create a 

multiple linear regression model to develop explanatory and predictive models that 

provide more insightful forecasts (Oliver, 2001).  He developed six categories with 

numerous sub-categories that he conducted correlation analysis to ascertain the critical 

variables that affect the MC rate.  The six overarching categories were personnel, 

environment, reliability and maintainability, funding, aircraft operations and logistics 

operations (Table 2).   
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         Table 2. Potential Factors Affecting the MC Rate (Oliver, 2001)

 
 

Personnel 

Captain Oliver identified the numerous changes within our force structure from 

the build-up of the 1980s to the drawdown of our forces after the fall of the Berlin wall 

and the victory in the Persian Gulf War.  In addition to the reduction in force, a decline in 

retention rates, increased operations tempo and changes in the Air Force Specialty Code 

shred-out for maintenance personnel, all had major impacts to the amount of 3-levels, 5- 

levels and 7-levels across all flight-lines.  He concluded that in the maintenance arena, 

changes in manning levels, experience (skill level and rank), morale and retention were 

related to changes in MC rates.  Captain Oliver also deducted that some of these factors 

are easily quantified (manning levels and number of NCOs) while others are not 

(maintenance experience and morale). With respect to the quantifiable variables, 

several studies have indicated manning levels in the enlisted maintenance career fields 
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(2AXXX and 2WXXX) appear to be negatively correlated to the MC rate (Oliver, 

2001). 

Environment 

One of the most used clichés in the past 15 years is, “doing less with more.”  As 

the Air Force has drawn down its forces, operation tempo has increased and this has had 

a dramatic effect on the defense environment.  Captain Oliver concluded through his 

research that some of these effects can be seen as decreased aircraft reliability and 

maintainability and spare parts level, increased maintenance man-hours and deployments, 

and reduced retention and morale (Oliver, 2001).  The Operations Tempo (OPSTEMPO) 

and Personnel Tempo (PERSTEMPO) have only increased since 2001 with Operations 

ENDURING FREEDOM and IRAQI FREEDOM.   

Reliability  

Reliability is the probability that an item will perform its intended function under 

stated conditions for either a specified interval or over its useful life (DoD, 2005).  In 

2001 when Captain Oliver conducted his research, the average age of our fleet was 20 

years old with 40 percent of the fleet 25 years or older.  As these aircraft age and their 

operating conditions change, the reliability of their systems and components begins to 

decrease and costs start to increase (Oliver, 2001).  More breaks require more 

maintenance actions taken to bring an aircraft back to MC status.  This problem has only 

been compounded as our fleet on average has gotten older.  As of 2011, the average age 

of the Air Force fleet was over 27 years old (USAF, 2012).  Figure 2 depicts this aging 

trend over the past 20 plus years.  Captain Oliver also pointed out the additional man-

hours required to keep these aging aircraft airworthy such as special inspections and 
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Time Compliance Technical Orders (TCTO) have only grown exponentially as our fleet 

has aged.  These additional man-hours are making up more and more of the TNMCM 

time.  Figure 3 provides a snapshot of the upward trend of our aging aircraft and AA over 

that time period. 

 
Figure 2. Aging Trends of Air Force Aircraft (AF/A8, 2012) 
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   Figure 3. Average Age of Air Force Aircraft vs. AA (SAF/FMB, 2009) 

            Funding 

The common characteristic amongst all research conducted on MC rates/AA rates 

have been funding.  Without the funding required for spares, equipment, depot, upgrades 

and reparable parts operations would cease to exist.  In his in-depth research, Captain 

Oliver discovered that a study conducted by the Dynamic Research Corporation (DRC) 

concluded that if funding for spare parts is even marginally less than the requirement it 

will have a negative impact on aircraft availability (Oliver, 2001).  While the relationship 

between funding and AA rates might not always be easily identified, previous research 

has proven that a reduction in funding or reallocation of funds has an impact on AA rates.  

An example of this is the RAND study Captain Fry (2010) utilized in his research of AA 

rates.  It was discovered that aircraft maintained by Contracted Logistic Services (CLS) 

contractors have a higher amount of fixed costs than organically repaired aircraft, and a 

result of this is CLS programs are less affected by funding instability compared to 

organically repaired aircraft (Fry, 2010). 
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Another possible impact funding has on AA is the process how funds are 

allocated to Weapons System Sustainment.  Prior to 2008, the Air Force replicated the 

process to determine weapon system sustainment requirements, allocate resources, and 

execute funds across each of the 10 MAJCOMS (including the Guard and Reserves) 

through stove-piped business areas (Fry, 2010).   Each MAJCOM created their budget 

and program objective memorandum (POM) inputs based on those requirements and 

submitted them to Air Staff (Figure 4).  At this stage, requirements usually exceeded the 

resources available so resources were allocated on a “percent funded” basis (McKown, 

2009).  After enactment of funds, Air Staff sent funds to the MAJCOMS for execution.  

Finally, the MAJCOMS provided funds to the appropriate AFMC product and logistics 

centers for every program they operated on an expense-by-expense basis for execution.  

Additionally, product and logistics centers, depots, and supply operations exchanged 

funds within AFMC.  As a result, over two million transactions occurred every year 

between AFMC’s supply and maintenance activities alone (Naguy and Keck, 2007). 

 
Figure 4: Requirements, Allocation and Execution of Funds (Fry, 2010) 

This process proved to be very inefficient due to the labor intensive, parallel 

activities which were stove-piped in each MAJCOM.  This process lacked the holistic 
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view that each MDS requires for fleet management and induced a non-homogeneous 

perspective of requirements and allocation of funds.  Finally, due to the different 

procedures used and subsequent inconsistencies inherent in the requirements 

determination and resource allocation process, there was not a feasible way to determine 

the impact of funding reductions on aircraft availability.  This shortcoming meant that Air 

Force leaders were unable to know if the needs of the warfighter were going to be met in 

an environment of constrained resources (Fry, 2010). 

In an effort to improve AA, focus on AF-level planning for supply and 

maintenance, and reduce maintenance downtime AF/A4 developed eLog21 in 2003 

(AFMC/A4).  The only issue to seeing the full effects of eLog21 was the stove-piped,  

compartmentalized way of determining requirements, resourcing allocations and 

executing the funds to meet those requirements.  To improve this process, the centralized 

asset management (CAM) was created and AFMC was designated Executive Agent for 

this account (AFMC/A4).  CAM is based off of four pillars; centralized funding, 

centralized requirements determination, integrated wholesales supply and depot 

maintenance, and performance based logistics.  CAM is a combination of A4 and FMB 

with A4 responsible for the weapons system sustainment requirements, POM, 

performance based outcomes, and Consolidated Air Force Data Exchange system and 

FMB responsible for the financial management of the requirements (AFMC/A4).  CAM 

provides the structure required to provide a holistic view of managing weapons systems 

and allow for optimization at the USAF level (Figure 5).  With the critical importance of 

AA, CAM links AA with AFMC metrics through performance based outcomes. 
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Figure 5.  Centralized Asset Management Process (AFMC/A4) 

  Aircraft Operations 

 Captain Fry discovered through his research that an increase in the number of 

sorties is positively correlated to MC rates, but that an increase in the number of sorties 

combined with an increase in the number of cannibalizations is negatively correlated to 

MC rates (Fry, 2010).  

Logistics Operations 

 There are many variables within the logistics arena that can possibly affect AA 

such as Total Non-Mission Capable Supply (TNMCS), depot repair time, supply 

reliability and maintenance scheduling effectiveness.  But, previous research by Captain 

Oliver and Captain Fry identified a few of these variables have a direct correlation to the 

AA rate.  Captain Fry showed that awaiting parts discrepancies and a shortage of spare 

parts have a negative correlation to AA rates.  It was also discovered by the GAO that 
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MC rates increase as consumables or repairable parts orders are filled within one or two 

days (Fry, 2010).   

 As stated at the beginning of this chapter, Captain Oliver and Captain Fry’s 

analysis of the MC/AA rate is the framework for this research and the six categories of 

personnel, environment, reliability & maintainability, funding, aircraft operations and 

logistics operations are the independent variables we will examine in creating our 

forecasting AA model.  Table 3 shows a snapshot of the AA correlated variables. 

        Table 3. Variable Correlation with AA Rates (Fry, 2010) 

 
  

 With the historical aspect of AA and previous research conducted on AA rates 

complete, the previous and current AA rate models utilized within the Air Force are 

reviewed. 

 

Category Variable Correlation Author 
 

 
 
 
 
 
 
 
 
 
 
 
 

Personnel 

Ratio of 3-levels to 5-levels Negative Oliver, 2001
Ratio of 3-levels to 7-levels Negative Oliver, 2001 

Total # of Inexperienced
Maintainers by Rank or Skill 

Level 
Negative Oliver, 2001 

Maintainers Per Aircraft Positive Oliver, 2001
Total # of Maintainers Positive Oliver, 2001

Overall Reenlistment Rate Positive Oliver, 2001
Reenlistment Rate of First-

Term Airmen 
Positive Oliver, 2001 

Reenlistment Rate of Career 
Airmen 

Positive Oliver, 2001 

Reenlistment Rate of Eligible
Crew Chiefs 

Positive Oliver, 2001 

Crew Chief Manning Levels Positive Huscroft, 2004
Percentage of 7-level

Maintainers 
Positive Chimka and

Nachtmann, 2007 
Percentage of 9-level

Maintainers 
Positive Chimka and

Nachtmann, 2007 
 
 
 
 

Environment 

Average # of Possessed
Aircraft 

Positive Gilliland, 1990 

 
Aircraft Age 

Mixed
(Bathtub 
Curve) 

GAO, 2003 

Transition to Combat Wing 
Structure in 2002 

Positive Barthol, 2005 

 

 
 

Reliability & 
Maintainability 

 
Cannibalization Rate Negative 

Gilliland, 1990;
Moore, 1998; 
Oliver, 2001 

Awaiting Maintenance
Discrepancies 

Negative Gilliland, 1990 

8-Hour Fix Rate Positive Oliver, 2001
Funding CLS supported Positive RAND, 2009

Aircraft Operations Sorties Mixed Moore, 1998; 
 
 

Logistics Operations 

Awaiting Parts Discrepancies Negative Gilliland, 1990
% of Requests for 

Consumables Filled in 1-2 
days 

Positive Moore, 1998 
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Aircraft Availability Forecasting Models 

Aircraft Availability Model 

 One of the first models developed was the Aircraft Availability Model (AAM) 

that was created in 1983.  It is an analytical model and decision support system that 

relates expenditures for the procurement and depot repair of recoverable spares to aircraft 

availability rates by weapons system (O’Malley, 1983).  The AAM produces curves of 

cost versus availability rate for each aircraft type (Figure 6).   

 
                       Figure 6. Aircraft Availability Curve (Fry, 2010) 

However, the AAM does not take any variable outside of TNMCS as a 

consideration into the equation.  It’s utilized by the Air Force Logistics community to 

determine the amount of spare parts needed with the funding available and still meet a 

certain level of aircraft availability (Fry, 2010).  Although it is a great model in 

determining the repairable parts needed for each weapons system, it’s not a complete 

decision support system in terms of determining AA.  
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Funding/Availability Multi-Method Allocator for Spares 

 In 2001, the Air Force started to utilize the Funding/Availability Multi-Method 

Allocator for Spares (FAMMAS) as a way to forecast MC rates for each of the weapons 

systems.  Employing time-series forecasting methods, FAMMAS uses the last 3 years of 

historical TNMCS and Total Non-Mission Capable Maintenance (TNMCM) data combined 

with past, present, and future spares funding to forecast MC rates (Fry, 2010).  While it 

produces useful results, time-series models like FAMMAS do not provide insight into 

potential cause-and-effect relationships that may be exploited to affect MC rates. FAMMAS 

produces its forecasts by simply projecting data trends, not by using explanatory models (Fry, 

2010).  As discussed earlier in the chapter, Captain Oliver discovered there are more 

variables that have a correlation with the AA rate besides funding and TNMCS and TNMCM 

rates such as number of personnel assigned and skill levels.  Therefore, FAMMAS is not an 

effective tool to use for policy or resource decisions because of the limited scope of variables 

used in the model and because the relationships between the variables are largely unknown 

(Oliver, 2001). 

Mobility Aircraft Availability Forecasting Simulation Model 

In 2005, AMC/A4 Directorate of Logistics contracted Northrup Grumman and 

Wright State University to build an AA forecasting model that could be used within 

AMC.  They developed the Mobility Aircraft Availability Forecasting Simulation Model 

(MAAF).  MAAF is an object-oriented modeling and simulation tool that is purportedly 

capable of predicting AA rates, providing “what if” analysis, and offering insight into 

problems that may affect AA (Fry, 2010).  Although the model proved to be a useful 
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prototype in laboratory conditions, AMC determined the model was not ready for 

implementation in real-world operations (Fry, 2010).   

There are other models utilized within the logistics community such as the Logistics 

Composite Model (LCOM), and the Aircraft Sustainability Model (ASM) but their main 

objective is readiness and not AA.  Since this research sole focus is to analyze the variables 

that impact AA and create a forecasting AA model with those critical variables, it is prudent 

to leave those models out of this research. 

Chapter Summary 

 In this chapter, a historical look at AA and AMC’s current AA standard for the 

KC-135 was discussed.  Previous research conducted on optimizing AA to include 

Captain Oliver and Captain Fry’s thesis on this subject was highlighted.  Lastly, a 

literature review with a historical view of AA models utilized throughout the years to 

include the current models developed to help improve our readiness.  This literature 

review provides the foundation for this research and answering the research questions, 

ultimately reaching the objective of developing a predictive AA model with all the 

critical variables that affect AA.  

 

 

 

 

 

 

 



 

26 

 

III. Methodology 

Chapter Overview 

 Many variables affect the AA rate as shown in the literature review.  Thus, the 

research goal for this research is to identify these critical variables and add them into an 

explanatory/predictive AA model.  In order to achieve this goal, data must be collected 

on these variables, a process developed to identify the variable’s criticality and then 

utilize these variables in building a multiple linear regression model.  Chapter III 

describes this process.  First, explanation of the scope of data collection and research is 

discussed.  After the scope of data and research is discussed, acknowledging and 

understanding the applications/systems utilized to collect the data takes place.  From this 

point, describing the method used to standardize the data for comparison is provided.  

After the standardization method, expounding upon the method of correlation analysis to 

determine criticality is highlighted.  Lastly, a thorough explanation of multiple regression 

application and the creation of an aircraft availability predictive tool caps off the 

methodology section.  

Scope of Data Collection and Research 

 Previous research conducted on AA has been at the fleet level encompassing all 

the aircraft within a specific MDS.  An example of this is research that covered all F-16s 

within the Air Force (Oliver, 2001).  Research was also conducted at the fleet level, and 

included multiple MDS such as the A-10, B-52, and F-15, but only included active-duty 

aircraft (Fry, 2010).   This was due to the scope of the Centralized Asset Management’s 

mission only extends to the Active Duty Air Force; it does not manage the O&M funds for 

weapon systems that operate in AFRC or ANG (Fry, 2010).  



 

27 

 

The scope of this research follows Oliver (2001) and Fry’s (2010) scope of research 

to a certain extent.  As with Oliver’s (2001) research, this research focuses on only one 

aircraft, the KC-135R.   And as with Fry’s (2010) research, this research only focuses on 

active duty aircraft.  But, this research will not examine the entire fleet of KC-135s across the 

Air Force; rather it will focus at the base level of operations with Fairchild AFB as the hub of 

the research.  The theoretical premise behind focusing at the tactical level of operations is 

there are many factors that take place at the base level that have a major impact on AA, 

which may be covered up by analyzing the entire fleet within the Air Force.  A hypothetical 

example of this are the decisions made for the flying schedule.  These decisions are greatly 

influenced by the environment of operations (training, personnel, experience, etc…) and 

executing that flying schedule has an impact on AA, and that impact can be analyzed through 

the flying schedule effectiveness (FSE) rate.  The strategic analysis of AA can possibly dilute 

the critical variables of AA, and not portray the actual impact of these variables.   A formal 

study conducted by AFLMA analyzing the declining Total Not Mission Capable for 

Maintenance (TNMCM) rates on the C-5 showed a misalignment of goals between the 

MXGs and the MAJCOM (Air, 2010).   The end result of the study was the decisions made 

at the tactical level for operational effectiveness had an impact on strategic readiness 

(Air, 2010).    

 The data for this study ranges from 2002 – 2012 encompassing variables from 

personnel, funding, reliability, aircraft and logistics operations.  This timeframe was 

selected due to the enduring changes in operations since 9/11and the strategic focus on 

AA during this time.   
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Data Sources 

 Data for the KC-135R at Fairchild AFB during the period of 2002 – 2012 was 

ascertained from five main sources; Logistic, Installation & Mission Support – Enterprise 

View (LIMS-EV), Air Force Total Ownership Cost (AFTOC), Military Personnel Data 

System (MilPDS), Manpower Programming and Execution System (MPES), and the 

Personnel Accounting Symbol (PAS) system.  Data from each one of these systems was 

collected covering the selected timeframe to provide a plethora of possible variables that 

correlate with AA, and supply the vast amount of data needed to build a multiple linear 

regression model.  Most of the variables collected have already been established as 

contributors to AA by previous research aforementioned in the literature review.  A 

thorough understanding of these systems provides the background needed for a 

repeatable and comprehensive methodology.   

LIMS-EV 

 LIMS-EV provides one central, standardized point of access to analytical 

information across all A4/7 resources and process areas (LIMS-EV, 2013).  It is made up 

of a host of different capabilities spanning from Executive, Logistics Readiness, 

Requirements, Maintenance Repair and Overhaul, and Mission Support capabilities 

(LIMS-EV, 2013).  In order to gain access to LIMS-EV, a request must be sent and 

permissions granted by HAF A4/7, then an individual can access up to 18 different 

capabilities within this resource.   

 To gain the amount of information needed for this research, the Weapons System 

View capability from LIMS-EV was utilized.  It provides a historical or snapshot type of 

report covering aircraft, missiles, or mine resistant ambush protected (MRAP) categories 
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offering metrics ranging from availability, status, debrief, and utilization with over 90 

subcategories.  The Weapons System View allows for search by CAF/MAF, mission 

area, specific MDS or down to the block configuration of the MDS (LIMS-EV, 2013).  It 

also offers the capability of selecting the theater, command, base or drilling down to the 

group/squadron level.  These reports can range from a year, quarter, month and down to 

daily status.  For the purpose of this research, a historical report was conducted with the 

KC-135R from Fairchild AFB, 92 ARW on a monthly basis from 2002 – 2012.  The 

metrics attained were from the categories of availability, status, debrief, and utilization.  

Overall 20 different variables were chosen to analyze for correlation with AA.  A 

snapshot of those variables is provided in Table 4. 

                                              Table 4.  LIMS-EV Data 

 

 

 

AFTOC 

 AFTOC is a net enabled decision support system that turns data into information.  

It provides visibility into the costs of owning and operating infrastructure by providing 

routine and timely visibility into almost all unclassified Air Force costs to include major 

Air Force systems, MAJCOMs, Air Force Appropriations, Logistics and Programmatic 

data (AFTOC, 2013).  In order to attain the critical funding data for the multiple linear 

regression model, AFTOC was the primary source for this information.  

Date CommandBase NamMD Wing/Gro Mission A Available  Available Depot (%) UPNR (N) UPNR (%) TAI (N) MC (%)

Jan 2002 AMC FAIRCHILDKC‐135 92nd Air RTanker 35.30 64.18% 27.54% 0.10 0.18% 55.00 89.15%

Oct 2002 AMC FAIRCHILDKC‐135 92nd Air RTanker 34.38 62.50% 27.11% 0.09 0.17% 55.00 84.94%

Nov 2002 AMC FAIRCHILDKC‐135 92nd Air RTanker 36.91 67.11% 23.18% 0.33 0.60% 55.00 86.29%

Dec 2002 AMC FAIRCHILDKC‐135 92nd Air RTanker 37.51 68.20% 23.35% 0.86 1.56% 55.00 90.47%

NMCB (%) NMCM (% NMCS (%) MMH / FH Hours FlowSorties FloSorties SchASD (H) Flying houUSE / FH (HSorties / TUSE / SortiFSE (%)

3.98% 4.86% 2.02% 7.89 1,281.70 249.00 249.00 5.15 23.30 38.03 4.53 7.39 100.00%

5.60% 5.31% 4.15% 9.50 1,072.70 209.00 209.00 5.13 19.50 34.08 3.80 6.64 100.00%

4.83% 6.82% 2.06% 9.15 1,032.50 203.00 203.00 5.09 18.77 31.36 3.69 6.17 100.00%

2.17% 4.23% 3.12% 7.17 1,231.50 210.00 210.00 5.86 22.39 38.30 3.82 6.53 100.00%
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 In order to attain access to the AFTOC database, a request must be sent to the 

AFTOC managers and permission granted.   Once permission is granted, an individual 

has four methods to access data; standard reports, online analytical processing (OLAP), 

account tool, and the weapons system cost retrieval system (WSCRS).  For the purpose of 

this study, standard reports and OLAP is highlighted.   

The standard reports capability has five different formats; appropriations, cost 

analysis improvement group (CAIG), CAIG new, commodities and indirect.  The 

appropriations report identifies direct costs in the form of obligations and budget 

authority for weapons systems developed, procured, and operated by the Air Force 

(AFTOC, 2013).  The limitation to the appropriations format within the standard report is 

inability to drill down to the base level and only a 4-year historical look back.  Table 5 

highlights the data pulled from the appropriations format of the standard report. 

                  Table 5.  Appropriation Data from the Standard Report 

 
  

Analyst Notes

2008 2009 2010 2011 2012
25,888,935 25,303,931 32,145,605 41,661,618 24,123,763
25,888,935 25,303,931 32,145,605 41,661,618 24,123,763

104,850,706 106,729,451 100,217,907 19,312,746 21,195,176
5,319,421 3,220,595 1,686,906
2,536,129 7,161,476 86,807
1,281,074 1,365,318

11,124 5,255
113,987,329 118,487,964 101,991,620 19,312,746 21,200,432

114,731
114,731

36,788,856 39,865,696 42,182,009 39,565,264 36,220,521
89,524,306 73,969,559 82,161,703 88,572,357 54,291,663
24,994,346 39,592,342 43,879,482 38,623,540 20,923,362

578,005,107 328,384,619 425,894,111 606,136,149 412,042,120
327,057,643 275,450,070 334,914,838 292,882,192 334,701,819
10,084,721 20,071,427 10,288,022 12,436,494 11,294,560
10,468,049 5,988,681 6,112,919 5,276,606 10,212,757
23,236,323 24,590,093 16,504,743 19,198,628 26,761,769
63,905,766 64,621,826 62,884,477 68,629,741 56,808,192

1,164,065,116 872,534,312 1,024,822,304 1,171,320,971 963,256,764
9,111,814 10,771,438 11,363,931 15,363,754 22,205,048
2,602,248 3,887,603 4,338,894 4,711,497 3,383,309

747,723 1,092,576 1,479,003 1,497,221 1,211,181
3,910,784 3,603,314 4,531,052 5,943,131 6,556,101

107,453 0 6,000
94,086 123,484
19,874 49,718 101,478 93,447 152,406

7,772,795 8,805,326 8,114,014 9,538,488 12,850,355
24,366,778 28,333,457 29,928,372 37,153,538 46,358,401

124,983,009 119,458,485 126,166,163 125,482,221 120,781,690
18,347,731 16,907,986 21,852,981 17,471,201 14,450,888
10,358,724 8,488,989 8,968,631 8,023,814 6,129,296

112,480,745 94,283,751 118,303,238 158,253,920 161,943,528
72,535,025 89,086,382 128,974,470 156,028,038 138,206,805
1,205,541 856,000 5,665,008 1,581,426 1,366,896
8,287,516 9,617,885 9,433,897 10,581,485 9,050,569

8,892 86,147 73,224 150,395
348,198,291 338,708,370 419,450,535 477,495,329 452,080,066
240,554,953 237,995,685 264,271,121 254,713,706 253,923,648
36,969,374 46,068,553 39,194,812 26,954,676 26,960,607
17,226,126 20,178,451 16,784,680 14,079,229 13,517,378

245,689,951 188,440,816 240,580,876 434,799,817 419,151,077
137,210,962 214,647,305 316,197,031 275,661,455 303,404,554

3,324,495 2,882,989 7,764,368 5,487,372 9,561,300
1,514,848 1,476,025 -438,835 31,524

38,903,930 33,035,739 34,986,252 39,974,518 30,882,022
721,394,638 744,725,563 919,340,304 1,051,702,296 1,057,400,586

2,160
315,702 1,389,637 1,305,943 1,419,972 517,826
285,687 211,141 205,380 280,470 107,514
603,549 1,600,777 1,511,323 1,700,441 625,339
290,207 2,680,902 970,254 744,507 730,338
72,878 82,835 95,077 -224,731 -461,127

363,084 2,763,737 1,065,331 519,776 269,211
237,738,465 261,127,179 276,702,463 296,089,149 317,411,449
117,038,063 129,146,422 132,384,216 131,436,861 132,118,026
354,776,528 390,273,601 409,086,679 427,526,011 449,529,475
38,072,557 59,017,994 60,848,793 75,060,941 75,948,493
18,092,299 26,068,636 25,657,501 29,415,793 28,541,243
56,164,856 85,086,630 86,506,294 104,476,734 104,489,737

129,176,989 138,572,713 160,351,057 149,366,147 153,062,341
61,110,038 65,430,582 75,169,481 69,764,900 69,651,045

190,287,028 204,003,295 235,520,538 219,131,048 222,713,387
3,000,210,862 2,811,821,637 3,261,368,905 3,552,000,508 3,342,047,160

Appropriation | KC-135R | All Cmd | Direct Obs Air Force Total Ownership Cost
Release Version: FY2012Q4V1 For Official Use Only

Release Notes

RDT&E  3600
Total

Procurement  3010 Modifications
Common Spt Equip
Initial Spares and Repair 
Misc Production Charges
Post Production Charges
Total

 3080 Elect & Telecom Equip
Total

O&M  3400 Civilian Personnel
DLRs
Consumables
AV Fuel
Depot Maintenance
Sustaining Engineering
Software Maintenance
Contract Services
Other
Total

 3600 Civilian Personnel
DLRs
Consumables
AV Fuel
Depot Maintenance
Software Maintenance
Contract Services
Other
Total

 3740 Civilian Personnel
DLRs
Consumables
AV Fuel
Depot Maintenance
Sustaining Engineering
Other
Contract Services
Total

 3840 Civilian Personnel
DLRs
Consumables
AV Fuel
Depot Maintenance
Sustaining Engineering
Contract Services
Other
Total

 3700 DLRs
Consumables
Other
Total

 3850 Consumables
Other
Total

MilPers  3500 Enlisted
Officer
Total

 3700 Enlisted
Officer
Total

 3850 Enlisted
Officer
Total

Grand Total
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The CAIG new format within the standard report, which has the same capabilities 

as the original CAIG format except for a different format established in 2008, offers the 

capability of drilling down to the base level and the ability to pull historical data as far 

back as 1997.  The limitation with the CAIG new format is it only pulls data 1 year for 

each report.  Although this limitation was time consuming, the CAIG new report was 

utilized to pull historical funding data for the KC-135R at Fairchild AFB from 2002 – 

2012.  In order to pull the report desired for this study, the direct obligations, aircraft, 

KC-135R, AMC, and each fiscal year from 2002 – 2012 were selected from the drop-

down menus.  Table 6 is a snapshot of some of the data attained from this report. 

               Table 6.  CAIG New Data from the Standard Report 

 

 

Analyst Notes Release Notes Commodities A/C Engine

All Base ANDERSEN AFB 
(GUAM) 

MAJCOM 
OTHER UNITS

ANDREWS AFB 
(MD) MAJCOM 

HQ

BANGOR ANG 
BASE (ME) 

MAJCOM 
OTHER UNITS

BEALE AFB (CA) 
MAJCOM 

OTHER UNITS

CHARLESTON 
AFB (SC) 21st 
AF 437th AW

ELMENDORF 
AFB (AK) 
MAJCOM 

OTHER UNITS

FAIRCHILD AFB 
(WA) 15th AF 

92nd ARW

210,092,594 10,059 23,775,237
178,533,014 161,473 30,649,614 444,567 927,054 13,841,260
228,991,334 55,932 150,614 13,184 3,121,661
19,047,802 238,244
2,281,955

17,049,181 1,821,765
655,995,879 217,406 30,649,614 595,182 927,054 10,059 13,184 42,798,168

CAIG New | FY2002 | KC-135R | AMC | Direct Obs | Financial View Air Force Total Ownership Cost
Release Version: FY2012Q4V1 For Official Use Only

CAIG New First Level

1.0 Unit Personnel
2.0 Unit Operations
3.0 Maintenance
4.0 Sustaining Support
5.0 Continuing System Improvements
6.0 Indirect Support
Total

10,059 23,775,237
64,738 69,032 11,839,020

375,535 8,090 107,655
30,584,876 918,964 1,894,586
30,649,614 444,567 927,054 13,841,260

150,614 13,184 3,121,661

150,614 13,184 3,121,661
211,484
26,759

238,244

1,567,778
253,987

1,821,765
30,649,614 595,182 927,054 10,059 13,184 42,798,168

1.0 Unit Personnel 210,092,594
2.1 Operating Material 122,217,726 144,286
2.2 Support Services 11,433,343 17,188
2.3 TDY 44,881,945
2.0 Unit Operations 178,533,014 161,473
3.1 Organizational Maintenance & Support 43,621,911 55,932
3.3 Depot Maintenance - Overhaul/Rework 185,369,423
3.0 Maintenance 228,991,334 55,932
4.1 System Specific Training 7,795,491
4.3 Operating Equipment Replacement 127,106
4.4 Sustaining Engineering & Prog Mgmt 11,125,204
4.0 Sustaining Support 19,047,802
5.2 Software Maintenance & Modifications 2,281,955
5.0 Continuing System Improvements 2,281,955
6.1 Installation Support 15,234,701
6.2 Personnel Support 1,814,480
6.0 Indirect Support 17,049,181

Total 655,995,879 217,406
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 The OLAP report is based off a multi-dimension database that organizes the data 

into a specialized structure to facilitate rapid analysis.  It allows the user to look at the 

data at either a highly detailed level of summary or a highly summarized level, and the 

ability to use different combinations of detail in each dimension (AFTOC, 2013).  It 

offers the ability for a user to drill down to the program element codes (PEC) or the 

responsibility codes.  A user has the ability to compare costs for a specific MDS across 

commands that fly that MDS.  OLAP also offers the ability to compare military and 

civilian costs for an aircraft or per flying hour basis (AFTOC, 2013).  Those features, just 

to name a few, combined with the ability to create a pivot table to arrange and display the 

data offer the user a lot of flexibility. The user can either utilize a predefined pivot table 

created by the AFTOC team, which is saved on the program’s “S” drive, or the user can 

38,867,881 10,059 4,457,493
21,248,901 2,004,036
5,551,868 716,921
9,782,382 911,865

75,451,033 10,059 8,090,314
72,110,819 8,461,263
34,185,301 4,152,585

57,089
41,358

106,394,568 12,613,848
5,726,931 733,816
8,733,189 792,017

13,786,873 1,545,242
28,246,993 3,071,075

210,092,594 10,059 23,775,237
112,666,780 64,738 3,413 10,584,677

9,550,946 144,286 65,619 1,254,343
122,217,726 144,286 64,738 69,032 11,839,020

5,407,695 17,188 305,272 70,134
140,117 70,263 8,090 724

5,885,531 36,797
11,433,343 17,188 375,535 8,090 107,655
44,881,945 30,584,876 918,964 1,894,586

178,533,014 161,473 30,649,614 444,567 927,054 13,841,260
11,940,405 54,242 64,237 11,514 1,105,629
31,681,506 1,690 86,378 1,670 2,016,032
43,621,911 55,932 150,614 13,184 3,121,661

182,607,073
2,589,981

172,369
185,369,423
228,991,334 55,932 150,614 13,184 3,121,661

2,088,614 201,884
9,601 9,601

5,697,276
7,795,491 211,484

127,106 26,759
11,125,204
19,047,802 238,244
2,281,955
2,281,955
2,281,955

15,142,010 1,567,778
92,692

15,234,701 1,567,778
1,814,480 253,987
1,814,480 253,987

17,049,181 1,821,765
655,995,879 217,406 30,649,614 595,182 927,054 10,059 13,184 42,798,168

1.1.1 Pilot
1.1.2 Aircrew
1.1.3 Crew Technician
1.1.4 Command & Control
1.1 Operations Personnel
1.2.1 Organizational
1.2.2 Intermediate
1.2.3 Ordnance
1.2.4 Other Maintenance
1.2 Maintenance Personnel
1.3.1 Unit Staff
1.3.2 Security
1.3.4 Other Support
1.3 Other Direct Support Personnel

1.0 Unit Personnel
2.1.1 Energy (Fuel, POL, Electricity)
2.1.3 Other Operational Material
2.1 Operating Material
2.2.1 Purchased Services
2.2.2 Transportation
2.2.3 Other
2.2 Support Services
2.3 TDY

2.0 Unit Operations
3.1.2 Repair Parts
3.1.3 Depot Level Reparables (DLR)
3.1 Organizational Maintenance & Support
3.3.1 Aircraft Overhaul/Rework Depot Repair
3.3.3 Engine Overhaul/Rework Depot Repair
3.3.4 Other  Overhaul/Rework Depot Repair
3.3 Depot Maintenance - Overhaul/Rework

3.0 Maintenance
4.1.1 Non-Operator Training
4.1.2 Operator Training
4.1.3 Simulator Operations
4.1 System Specific Training
4.3 Operating Equipment Replacement
4.4 Sustaining Engineering & Prog Mgmt

4.0 Sustaining Support
5.2.1 Software Maint & Mod (Government)
5.2 Software Maintenance & Modifications

5.0 Continuing System Improvements

Total

6.1.1 Base Operating Support
6.1.2 Real Property Maintenance
6.1 Installation Support
6.2.3 Medical Support
6.2 Personnel Support

6.0 Indirect Support
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create a pivot table from scratch.  Once the user has established what type of pivot table 

required, the OLAP capability offers multiple connections to specific data such as 

appropriations, CAIG New, GSA Fuel, Engines, or Indirect Costs.  For the purpose of 

this study, the CAIG New format was selected to retrieve historical costs data.  Table 7 

provides an overview of the data collected through the OLAP report.  

                              Table 7.  CAIG New Data from the OLAP Report 

 
 

The standard report and the OLAP report were the only two reports utilized to 

attain funding/costs data for this research.  The appropriations format and the CAIG new 

formant were both utilized within the standard and OLAP reports.  The remaining 

formats from both reports were not utilized and will not be expounded upon for the 

purposes of this research.   

  MilPDS, MPES, PAS  

 The personnel data was attained from the last three resources utilized, MilPDS, 

MPES and PAS.  A request was sent to HAF/A1 for access into the personnel system in 

order to attain information from Fairchild AFB from 2002 – 2012.  The response from 

HAF/A1 was a copious amount of data in a report covering authorized and assigned 

Direct Obs Column Labels

Row Labels 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

AMC 139,961,249 144,641,824 160,614,921 182,461,798 184,187,439 180,178,504 251,252,629 198,910,416 240,830,822 333,582,885 264,875,355

FAIRCHILD AFB (WA) 139,961,249 144,641,824 160,614,921 182,461,798 184,187,439 180,178,504 251,252,629 198,910,416 240,830,822 333,582,885 264,875,355

KC‐135R/T 139,961,249 144,641,824 160,614,921 182,461,798 184,187,439 180,178,504 251,252,629 198,910,416 240,830,822 333,582,885 264,875,355

AVFUEL 40,217,700 41,669,335 49,978,989 70,946,372 90,340,731 87,046,551 152,536,280 90,414,523 119,758,258 205,522,585 131,718,896

Civ Personnel 585,379 846,156 1,827,251 2,776,318 1,879,232 1,573,822 1,796,467 2,701,678 3,104,226 2,280,219 2,341,133

Communications 553 1,756 ‐122,906 110,340 68,987 32,181 34,176 12,684 6,545 28,725 180,978

Contract Services 198,378 273,130 316,029 4,052,912 6,022,200 7,567,917 10,017,268 8,054,686

DLR‐Flying 7,571,137 7,488,592 6,839,556 8,790,532 4,153,700 8,046,883 10,143,101 8,626,363 11,530,544 6,271,708 11,635,740

DLR‐Nonflying 1,250 20,817 2,706 7,200 27,173 1,265

Education & Training 32,722 14,789 15,668 10,106

Equip/Fac Lease & Rental 9,391 750 1,020

IT & Software 102,246 305,413 71,535 87,606 152,690 103,795

Maint, Repair, Minor Cons 19,950 29,401

Mil Personnel 77,367,458 83,374,414 89,262,293 85,126,068 73,090,378 68,680,892 68,645,951 79,257,319 87,104,662 97,574,441 101,392,789

Misc Expense 31,045 1,916 ‐107,148 25,957 92,722 28,528 5,523 14,386 9,477,393 11,009,882 6,939,098

Other Services 17,970 14,378 78,605 12,820

Printing 2,125

Purchased Equip 3,565 3,505 626 419 185,400 312,511 51,395

Purchased Equip Maint 14,400 678 215,861 155,649 147,839 180,348 121,470 192,260

Supplies 8,080,662 8,008,142 8,988,927 8,590,696 6,328,307 5,175,224 6,387,121 7,612,813 7,377,159 7,881,408 7,745,483

TDY 5,747,981 2,657,936 3,609,325 1,957,458 2,167,510 1,806,354 1,431,828 1,653,969 1,958,454 2,649,642 2,701,912

Transportation 2,198 244 851 146 4,459 820

Vehicle Rental 1,524 5,080 9,011 13,425

Grand Total 139,961,249 144,641,824 160,614,921 182,461,798 184,187,439 180,178,504 251,252,629 198,910,416 240,830,822 333,582,885 264,875,355
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personnel with a skill-level breakout by month for Fairchild AFB during the period of 

2002 – 2012.  The data pulled from MilPDS provided the accurate number of assigned 

personnel for Fairchild AFB during the time period.  The data pulled from MPES 

provided the correct number of authorized personnel during the time period, and the data 

pulled from PAS provided organizational data to identify the aircraft maintenance 

organizations tied to Fairchild AFB during the time period (HAF/A1P, 2013).  Table 8 

showcases some of the data attained from the report. 

                       Table 8.  Personnel Data from MilPDS, MPES and PAS 

 
 
 The reports obtained from these five sources of LIMS-EV, AFTOC, MilPDS, 

MPES, and PAS provide the data needed for the dependent variable of AA, and the 

independent variables that have a strong correlation with AA.  In order to define what 

month 

id pas nr org nbr org name org type location AFSC AFSC Desc Skl lvl Auth Asgd

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 20C LOGISTICS COMMANDER 2 2

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 21A AIRCRAFT MAINTENANCE 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 33S COMMUNICATIONS AND INFORMATION 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A5X1 AIRLIFT/SPECIAL MISSION AIRCRAFT MAINTENANCE 7 1 1

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A5X3 MOBILITY AIR FORCES ELECTRONIC WARFARE SYSTEMS 7 0 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A6X0 SYSTEMS (CEM) 9 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A6X2 AEROSP GROUND EQUIP 5 0 1

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A6X2 AEROSP GROUND EQUIP 7 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A7X1 ACFT METALS TECHNOLOGY 7 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 2A7X3 ACFT STRUCTURAL MAINT 7 0 1

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 3A0X1 KNOWLEDGE OPERATIONS MGT 7 1 1

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 6F0X1 FINANCIAL MGT AND COMPTROLLER 7 1 0

200210 FGFH 0092 MAINTENANCE GP FAIRCHILD 6F0X1 FINANCIAL MGT AND COMPTROLLER 5 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 21A AIRCRAFT MAINTENANCE 1 5

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 21B OPERATIONS MAINTENANCE 1 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 21S SUPPLY 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A4X1 ACFT G AND C 7 0 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A4X1 ACFT G AND C 3 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A4X1 ACFT G AND C 5 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A4X2 ACFT C AND N SYS 7 0 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A4X2 ACFT C AND N SYS 5 0 3

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X0 AEROSPACE MAINTENANCE (CEM) 9 0 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X1 AIRLIFT/SPECIAL MISSION AIRCRAFT MAINTENANCE 5 18 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X1 AIRLIFT/SPECIAL MISSION AIRCRAFT MAINTENANCE 7 9 8

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X1J AEROSPACE MAINTENANCE C‐5/C‐9/C‐12/C‐17/C‐20/C‐21/C‐22/C‐26/C‐27/C‐130/C‐141/T‐39/T‐43 5 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X1L AEROSPACE MAINTENANCE C‐135/C‐18/E‐3/E‐4/KC10/VC25/VC137 5 0 9

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X3 MOBILITY AIR FORCES ELECTRONIC WARFARE SYSTEMS 7 1 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A5X3 MOBILITY AIR FORCES ELECTRONIC WARFARE SYSTEMS 5 6 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X1 AEROSPACE PROPULSION 7 1 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X1 AEROSPACE PROPULSION 5 5 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X1A AEROSPACE PROPULSION JET ENGINES 5 0 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X1A AEROSPACE PROPULSION JET ENGINES 7 0 4

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X2 AEROSP GROUND EQUIP 7 0 1

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X5 ACFT HYDRAULIC SYSTEMS 7 1 3

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X5 ACFT HYDRAULIC SYSTEMS 5 1 0

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X6 ACFT ELECT AND ENVIR SYSTEMS 7 0 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2A6X6 ACFT ELECT AND ENVIR SYSTEMS 5 2 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2R0X1 MAINTENANCE MANAGEMENT ANALYSIS 7 4 3

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2R0X1 MAINTENANCE MANAGEMENT ANALYSIS 5 6 2

200210 FHCQ 0092 MAINTENANCE OPS SQ FAIRCHILD 2R0X1 MAINTENANCE MANAGEMENT ANALYSIS 3 2 7
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variables will be used for the multiple linear regression model, first the data must be 

manipulated to standardize comparison across the different spectrums.   

Standardizing the Data 

To ensure standard comparison, the data is manipulated in order to be in the same 

format.  Due to limitations on some of the reports obtained, the range of data will be from 

a fiscal year not a calendar year.  The range of data is from October 2002 – September 

2012.  The format for this research is all data must be in a monthly rate, percentage or 

dollar format for comparison.  Unfortunately, some of the data is not in this format and  

standardization is required.   The next section identifies the standardization process for 

each group of data. 

 LIMS-EV 

 The data obtained from the LIMS-EV was already in the desired format for 

comparison with other variables.  The data range was from a fiscal year and then broken 

down to monthly rates or percentages for each category requested.   

 AFTOC 

The data obtained from AFTOC was formatted in a fiscal year, but was limited to 

a yearly breakout.  In order to ensure a logical comparison between costs and AA, which 

is in a monthly format, each cost category for every year was broken down to 12 monthly 

data points simply by dividing the gross amount in each cost category by 12.  This allows 

a correlation comparison by month between the costs categories and the monthly AA 

rates obtained from LIMS-EV.  For example, the data obtained from the CAIG new 

report for Fairchild AFB during FY2012 was $149,876,321.  In order to compare this 

amount to the Fairchild FY2012 monthly AA rates, this amount was divided by 12 to 
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establish a monthly costs of $12,489,693.  This process was done for each cost category 

in each of the fiscal years examined.   

MilPDS, MPES, and PAS 

The personnel report obtained for Fairchild AFB during 2001 – 2012 was in a 

monthly format, but needed to be manipulated in order to get a percentage for each 

month.  The personnel report had two different overall data points; monthly assigned vs. 

authorized for the entire MXG, and a monthly skill level assigned vs. authorized for each 

AFSC during the examined time period.  Both of these overall data points were 

manipulated in order to obtain monthly percentages.  For example, the overall assigned 

for October, 2012 within the Fairchild AFB MXG was 839.  The overall authorized for 

the same time period was 914.  In order to get a percentage of assigned personnel for 

October 2012 within the Fairchild AFB MXG, the assigned personnel of 839 was divided 

by the authorized personnel of 914 for an assigned personnel percentage of 91.7% during 

October, 2012.  This process was conducted for each month of the examined time period.  

This same process was conducted for the monthly skill-level percentage of assigned vs. 

authorized for each AFSC at Fairchild AFB during 2002 – 2012.   

Now that all the data obtained is in a standard format of a monthly rate, 

percentage or dollar amount for each fiscal year examined, each variable must be 

correlated with AA to determine the criticality of the variable and its inclusion to the 

multiple linear regression model.   

Correlation of the Data 

In order to determine the criticality of these variables, determination of a 

relationship between the dependent variable (AA) and the independent variables (data 
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collected) must be established.  Correlation is used to measure the linear relationship 

between two variables; x (dependent variable) and y (independent variable).  A numerical 

descriptive measure of the linear association between x and y is provided by the 

coefficient of correlation, r (McClave, Benson, Sinich, 2009).  The coefficient of 

correlation, r, is a measure of strength of the linear relationship and is computed on a 

scale of -1 and +1.  A value of r near 0 indicates little or no linear relationship between x 

and y.  In contrast, a value close to -1 or +1 indicates a strong relationship between x and 

y (McClave, Benson, Sinich, 2009).  Due to vast amount of data, JMP® version 10 

software was utilized to determine the coefficient of correlation between the dependent 

variable x and each of the independent variables y.  For the purpose of this research, a 

coefficient of .5 or more and -.5 or less is considered a critical variable and is added as an 

independent variable for the multiple regression model.   

As stated in the textbook, Statistics for Business and Economics, 

“multicollinearity can exists between two or more of the independent variables used in a 

regression model” (McClave et al., 2009:713).  Multicollinearity happens when two or 

more of the independent variables are contributing information to the prediction of the 

dependent variable, but some of the information is overlapping because of the 

multicollinearity of the independent variables.  Some multicollinearity can be expected 

with numerous variables, but severe multicollinearity can cause misleading regression 

results (McClave et al., 2009).  In order to identify and discard any variables with severe 

multicollinearity, the JMP® software is utilized to determine variance inflation factors 

(VIF) scores on the independent variables.  As a rule of thumb, VIF scores less than 5 to 

10 are generally acceptable.  For the purpose of this research, a VIF score of 5 or less is 
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considered acceptable.  If a VIF score of more than 5 occurs in 2 or more independent 

variables, each independent variable with the high VIF score is removed individually and 

the regression equation with the highest R2 is kept.  Finally, once correlation is completed 

and the critical independent variables are identified, building the multiple linear 

regression model is the next step. 

Model Building Methodology 

The crux of this research is more than one independent variable has an impact on 

AA, and with multiple independent variables present, the complexity of an explanatory or 

predictive model is amplified.  Probabilistic models that include more than one 

independent variable are called multiple regression models (McClave et al., 2009).  The 

general form (Equation 5) of the these models is 

Y = β0 + β1x1 + β2x2 + … + βkxk + ε      (5)  
 
Where:  

Y = dependent variable  
x1, x2, … xk = independent variables  
β0 = the intercept  
β1, β2, … βk = the population coefficients  
ε = the random error component 

Note: “The symbols x1, x2, … xk  may represent higher-order terms for quantitative 
predictors or terms that represent qualitative predictors” (McClave, et al., 2009:626).   
 
 Once a multiple regression model is built, analyzing the model is a six-step 

process according to McClave et al. (2009), the steps are as follows: 

Step 1: Hypothesize the deterministic component of the model. This component 
relates the mean, E(y), to the independent variables x1, x2, … xk. This involves the 
choice of the independent variables to be included in the model.  

 
Step2: Use the sample data to estimate the unknown model parameters β0, β1, β2, … 
βk in the model.  
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Step 3: Specify the probability distribution of the random error term, ε, and estimate 
the standard deviation of this distribution, σ.  

 
Step 4: Check that the assumptions on ε are satisfied, and make model modifications 
if necessary.  

 
Step 5: Statistically evaluate the usefulness of the model. 

Step 6: When satisfied that the model is useful, use it for prediction, estimation, and 
other purposes. 

 

The model built for this research only includes quantitative independent variables 

and according to authors McClave et al. (2009), is called a first order model.  The method 

of fitting first-order models and multiple regression models is identical to that of fitting a 

simple straight line model; the method of least squares.  The main difference though is 

the estimates of the coefficients β0, β1,…βk are obtained using matrices and matrix 

algebra (McClave et al., 2009).  Vice using matrix algebra to establish the least ordered 

squares, the output of the JMP® software is utilized to determine our mean square for 

error (MSE). The goal of this research is to build a model that can provide predictions on 

AA with the smallest value of MSE as possible.  The MSE helps identify the utility of the 

model.   

The model building process begins with only the independent variables deemed 

critical in our correlation analysis.  Part of the model building process uses stepwise 

regression.  Due to the sheer amount of independent variables, this process is utilized by 

the JMP® software.  Stepwise regression results in a model containing only those terms 

with t-values that are significant at the specified α level.  Thus, only several of the initial 

independent variables remain (McClave, et al., 2009).  Since there is probability of errors 

being made, such as including unimportant variables in the model (Type I errors) and 
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omitting some important variables (Type II errors), it’s recognized this is only an 

objective variable screening process and is treated as such (McClave, et al., 2009).   

Step 4 of analyzing a multiple regression model is to check that the assumptions 

on “ε” are satisfied and make model modifications as needed.  The assumptions for 

random error “ε” have a probability distribution with the following properties (McClave, 

et al., 2009:626): 

1. Mean equal to 0 
2. Variance equal to σ2  
3. Normal distribution 
4. Random errors are independent (in a probabilistic sense). 

Residual analysis steps from McClave et al. (2009) are used to check for assumptions and 

to improve the model.  This process starts by plotting the residuals against each of the 

independent variables about a mean line of zero.  The goal is to look for a curvilinear 

trend.  This shape indicates a need for a second order term.  Next, examination of outliers 

is required.  If an observation is determined to be an error, outside 3-standard deviations, 

then it needs to be fixed or removed.  Following the examination of outliers, a frequency 

distribution is plotted using a histogram checking for obvious departures from normality.  

Lastly, plotting the residuals against the predicted values of y observing for patterns that 

may indicate the variance is not constant (McClave et al. 2009).   

McClave et al. (2009), elaborate in order to test the utility of a multiple regression 

model, a global test, one that encompasses all the β parameters is needed.  One such test 

is the multiple coefficient of determination of R2, which is explained variability divided 

by total variability. Thus, R2 = 0 implies a complete lack of fit of the model to the data, 

and R2 = 1 implies a perfect fit with the model passing through every data point.  In 
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general, the larger the value of R2, the better the model fits the data (McClave et al., 

2009).  In order to reach a desired usefulness of the AA model built, a R2 value of .80 or 

higher is a goal of this research.  Despite the R2 utility, it is only sample statistics.   An 

additional method is to conduct a test of hypothesis involving all the β parameters (except 

β0).  This method is an F-statistic, which is as follows: 

H0: β1 = β2 =…= βk =0 (terms with 0 are unimportant to predicting y) 

Ha: At least one model term is useful for predicting y 

The MSE, R2 and F-statistic will be used to determine the merit of the model and aid in 

the model building.  The final explanatory model will include only those variables 

deemed to have an important relationship to AA, and have a low MSE, a R2 of .80 or 

above and a rejection of the null hypothesis.   

 Lastly, a test of the model takes place to evaluate its ability for prediction.  As 

with Oliver (2001) and Fry (2010), 20 percent of the initial data is set aside and not used 

to build the regression model, but rather used to test the final regression model. The 

confidence intervals for AA from the final explanatory model (without the 20 percent of 

data) are benchmarked to measure the test data.  Using this procedure for model validation 

allows the evaluation of the model’s usefulness when new data from outside the original 

sample is used for prediction.   

From this point, a tool is created from the final multiple regression model formula to 

help maintenance leaders predict AA from the critical variables identified.  This tool will 

help maintenance leaders ascertain what rates or percentages of the critical variables the unit 

must attain in order to achieve an AA goal.   
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Chapter Summary 

 In this chapter, explanation of the scope of data collection and research was 

discussed.  In addition to the scope of data collection and research overview, 

understanding the applications/systems utilized to collect the data followed.  From there, 

describing the method used to standardize the data for comparison was provided.  After 

the standardization method, expounding on the methodology of correlation analysis to 

determine criticality was highlighted.  Lastly, a thorough explanation of the multiple 

regression model and the process utilized to build an AA explanatory model was 

examined.  Analysis and results of the data is discussed in the next chapter.  
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IV.  Analysis and Results 

Chapter Overview 

Utilizing the methodology discussed in Chapter III, analysis and results of the 

KC-135R data from Fairchild AFB during FY 2002 – 2012 is discussed in this chapter.  

First, results from the correlation analysis are explained.  After correlation analysis, 

regression models are created utilizing the critical variables identified and the results of 

developing the final regression model is discussed.  The last aspects of this chapter are 

the results of validating the final regression model utilizing the test data from FY2010 – 

2012, and creating a tool for maintenance leadership to utilize in predicting aircraft 

availability through the critical variables identified from the final regression model.   

Correlation Analysis Results 

 Overall 35 different KC-135R variables were utilized for correlation analysis 

from the data collected during the period of FY2002 – 2012 at Fairchild AFB.  Table 9 

illustrates all the variables used for correlation analysis.  Unfortunately, some of the 

previously determined critical variables in LIMS-EV such as the repeat/recur rate and 12-

hour fix rate did not have any data during the time period specified and were not included 

in this analysis.   These variables were selected due to their availability and applicability 

from the sources utilized.   

                              Table 9.  Variables Used for Correlation Analysis 

 
 

Available (N) Available (%) Depot (%) UPNR (N) UPNR (%)

TAI (N) MC (%) NMCB (%) NMCM (%) NMCS (%)

MMH / FH (Unit) (N) Hours Flown (H) Sorties Flown (N) Sorties Scheduled (N) ASD (H)

Flying hours / TAI by Month (H) USE / FH (H) Sorties / TAI by Month (N) USE / Sortie (N) FSE (%)

Costs Assigned/Authorized Crew Chief  Cann Rate Hours (%) Cann Rate Sorties (%)

Cann Hours (H) Canns (N) MTBF‐1 (Inherent) (H) MTBF‐2 (Induced) (H) MTBM‐6 (No Defect) (H)

MTBM Total (H) Failures ‐ 1 (Inherent) (N) Failures ‐ 2 (Induced) (N) Total Actions (N) TMMHs (H)
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 The first step in the correlation analysis was to utilize the JMP® software, and 

create a scatterplot matrix to provide a visual reference on possible relationships between 

the dependent variable y (Available %) and the independent variables x (remaining 

variables).  This visual clue provided the opening into deducting what variables 

demonstrated a relationship with AA.  Figure 7 illustrates the scatterplot matrix. 

 
                                                        Figure 7.  Scatterplot Matrix 
 

Although, it was visually recognized some of the variables did not have a 

relationship with AA, such as FSE, a multivariate correlation analysis was conducted to 

determine what the true critical variables are in relation to AA.  Table 10 represents the 

results from this multivariate correlation analysis. 

                                    Table 10.  Multivariate Correlation Results   
Available Depot (%) UPNR (N) UPNR (%) TAI (N) MC (%) NMCB (%) NMCM (% NMCS (%) MMH / FH Hours FlowSorties FloSorties SchASD (H) Flying houUSE / FH (HSorties / TUSE / SortiFSE (%) Costs Assigned/ Crew ChieCann Rate Cann Rate Cann HourCanns (N) MTBF‐1 (InMTBF‐2 (InMTBM‐6 (NMTBM Tot Failures ‐  Failures ‐ 2Total ActioTMMHs (H

Available  1 ‐0.79388 ‐0.03886 ‐0.05204 0.075735 0.669366 ‐0.369 ‐0.57961 ‐0.19407 ‐0.12202 0.245001 0.266751 0.266751 0.028766 0.096111 ‐0.1359 0.104993 ‐0.13707 0 ‐0.10546 0.457391 0.487462 0.047312 0.065229 0.001842 0.1427 0.049402 0.154851 ‐0.23812 ‐0.17131 ‐0.018 ‐0.09787 0.224662 0.024345

Depot (%) ‐0.79388 1 ‐0.02661 ‐0.06233 0.191725 ‐0.11642 0.164156 0.087467 ‐0.02625 0.385162 ‐0.47271 ‐0.48762 ‐0.48762 ‐0.13804 ‐0.40185 ‐0.13228 ‐0.40649 ‐0.13014 0 ‐0.21588 ‐0.43442 ‐0.43821 0.070291 0.050141 ‐0.01364 ‐0.16352 ‐0.07838 ‐0.05645 0.059511 0.032828 ‐0.21693 ‐0.12419 ‐0.34814 ‐0.05774

UPNR (N) ‐0.03886 ‐0.02661 1 0.956436 0.253617 0.161765 ‐0.20561 ‐0.14299 0.063046 0.197964 ‐0.31486 ‐0.32354 ‐0.32354 ‐0.08684 ‐0.37681 ‐0.36253 ‐0.38092 ‐0.3724 0 ‐0.24324 ‐0.08404 0.039038 ‐0.0298 ‐0.01111 ‐0.00024 ‐0.10925 0.167231 0.24883 0.100126 0.156875 ‐0.28025 ‐0.26146 ‐0.2199 ‐0.32699

UPNR (%) ‐0.05204 ‐0.06233 0.956436 1 0.024329 0.106998 ‐0.27642 ‐0.04893 0.06836 0.042608 ‐0.28304 ‐0.2893 ‐0.2893 ‐0.07704 ‐0.24222 ‐0.24625 ‐0.23938 ‐0.24642 0 ‐0.05404 ‐0.17044 ‐0.08821 ‐0.11038 ‐0.09575 ‐0.05246 ‐0.12799 0.219378 0.305169 0.087825 0.155494 ‐0.18847 ‐0.21138 ‐0.09586 ‐0.27246

TAI (N) 0.075735 0.191725 0.253617 0.024329 1 0.357723 0.25679 ‐0.51584 ‐0.06336 0.704249 ‐0.28758 ‐0.29425 ‐0.29425 ‐0.10616 ‐0.714 ‐0.63251 ‐0.73799 ‐0.6689 0 ‐0.86884 0.22001 0.45404 0.412656 0.412778 0.197312 0.05224 ‐0.31529 ‐0.1602 ‐0.16464 ‐0.18329 ‐0.46189 ‐0.3108 ‐0.57594 ‐0.23636

MC (%) 0.669366 ‐0.11642 0.161765 0.106998 0.357723 1 ‐0.51483 ‐0.8552 ‐0.34511 0.284877 ‐0.24698 ‐0.22679 ‐0.22679 ‐0.16275 ‐0.38984 ‐0.46111 ‐0.37779 ‐0.45734 0 ‐0.43732 0.169356 0.234954 0.160846 0.171164 ‐0.00379 0.022009 0.041761 0.266625 ‐0.30155 ‐0.20593 ‐0.3455 ‐0.36918 ‐0.08 ‐0.10987

NMCB (%) ‐0.369 0.164156 ‐0.20561 ‐0.27642 0.25679 ‐0.51483 1 0.192471 0.058041 0.158794 0.029844 0.030329 0.030329 ‐0.00143 ‐0.0833 0.032637 ‐0.08694 0.030969 0 ‐0.1798 0.054608 0.135951 0.132311 0.113814 0.064725 0.027921 ‐0.32179 ‐0.42118 0.141789 0.012982 0.200598 0.326568 ‐0.18855 0.096926

NMCM (% ‐0.57961 0.087467 ‐0.14299 ‐0.04893 ‐0.51584 ‐0.8552 0.192471 1 ‐0.06382 ‐0.43438 0.325029 0.295144 0.295144 0.222673 0.52738 0.55589 0.50702 0.543601 0 0.584179 ‐0.28813 ‐0.38187 ‐0.26045 ‐0.26094 ‐0.02661 ‐0.05837 0.123765 ‐0.12003 0.379404 0.3186 0.311038 0.312985 0.093954 0.00252

NMCS (%) ‐0.19407 ‐0.02625 0.063046 0.06836 ‐0.06336 ‐0.34511 0.058041 ‐0.06382 1 0.041439 ‐0.07403 ‐0.06335 ‐0.06335 ‐0.04864 ‐0.03126 ‐0.00727 ‐0.01591 0.010822 0 0.058224 0.124143 0.080183 0.018048 0.008222 0.00982 0.042588 ‐0.0915 ‐0.07268 ‐0.14625 ‐0.15379 0.065797 0.012381 0.177174 0.199702

MMH / FH  ‐0.12202 0.385162 0.197964 0.042608 0.704249 0.284877 0.158794 ‐0.43438 0.041439 1 ‐0.73073 ‐0.70478 ‐0.70478 ‐0.42913 ‐0.84837 ‐0.7964 ‐0.83314 ‐0.78404 0 ‐0.6729 0.039116 0.175881 0.454781 0.445682 0.241163 0.057956 ‐0.38891 ‐0.21407 ‐0.21959 ‐0.27181 ‐0.35624 ‐0.24348 ‐0.45391 ‐0.06387

Hours Flow0.245001 ‐0.47271 ‐0.31486 ‐0.28304 ‐0.28758 ‐0.24698 0.029844 0.325029 ‐0.07403 ‐0.73073 1 0.976022 0.976022 0.497069 0.859747 0.795569 0.824401 0.760001 0 0.395899 0.249327 0.166682 ‐0.27038 ‐0.26693 ‐0.09909 0.050837 0.161514 ‐0.00171 0.139336 0.151843 0.30805 0.252104 0.302508 0.077324

Sorties Flo 0.266751 ‐0.48762 ‐0.32354 ‐0.2893 ‐0.29425 ‐0.22679 0.030329 0.295144 ‐0.06335 ‐0.70478 0.976022 1 1 0.301748 0.843975 0.759687 0.845977 0.766939 0 0.409643 0.26107 0.1669 ‐0.25514 ‐0.25298 ‐0.09425 0.055132 0.12695 ‐0.03023 0.137653 0.136078 0.321497 0.278987 0.285361 0.064842

Sorties Sch 0.266751 ‐0.48762 ‐0.32354 ‐0.2893 ‐0.29425 ‐0.22679 0.030329 0.295144 ‐0.06335 ‐0.70478 0.976022 1 1 0.301748 0.843975 0.759687 0.845977 0.766939 0 0.409643 0.26107 0.1669 ‐0.25514 ‐0.25298 ‐0.09425 0.055132 0.12695 ‐0.03023 0.137653 0.136078 0.321497 0.278987 0.285361 0.064842

ASD (H) 0.028766 ‐0.13804 ‐0.08684 ‐0.07704 ‐0.10616 ‐0.16275 ‐0.00143 0.222673 ‐0.04864 ‐0.42913 0.497069 0.301748 0.301748 1 0.411593 0.47401 0.255444 0.294302 0 0.116972 0.055389 0.063456 ‐0.21615 ‐0.2112 ‐0.10551 ‐0.02739 0.202706 0.098906 0.063335 0.12143 0.09293 0.006487 0.220323 0.112517

Flying hou 0.096111 ‐0.40185 ‐0.37681 ‐0.24222 ‐0.714 ‐0.38984 ‐0.0833 0.52738 ‐0.03126 ‐0.84837 0.859747 0.843975 0.843975 0.411593 1 0.923057 0.984634 0.914988 0 0.755785 0.014559 ‐0.16431 ‐0.37187 ‐0.37271 ‐0.14505 0.011942 0.235871 0.025836 0.20645 0.20624 0.468481 0.372545 0.477896 0.19329

USE / FH (H ‐0.1359 ‐0.13228 ‐0.36253 ‐0.24625 ‐0.63251 ‐0.46111 0.032637 0.55589 ‐0.00727 ‐0.7964 0.795569 0.759687 0.759687 0.47401 0.923057 1 0.894426 0.979511 0 0.679676 ‐0.08549 ‐0.25017 ‐0.39769 ‐0.40123 ‐0.17312 ‐0.05852 0.275275 0.032691 0.282862 0.285539 0.38767 0.32078 0.366339 0.166252

Sorties / T 0.104993 ‐0.40649 ‐0.38092 ‐0.23938 ‐0.73799 ‐0.37779 ‐0.08694 0.50702 ‐0.01591 ‐0.83314 0.824401 0.845977 0.845977 0.255444 0.984634 0.894426 1 0.921566 0 0.780869 0.011531 ‐0.18032 ‐0.36831 ‐0.36996 ‐0.14807 0.01247 0.215882 0.008863 0.210924 0.199614 0.485002 0.397284 0.471569 0.188036

USE / Sorti ‐0.13707 ‐0.13014 ‐0.3724 ‐0.24642 ‐0.6689 ‐0.45734 0.030969 0.543601 0.010822 ‐0.78404 0.760001 0.766939 0.766939 0.294302 0.914988 0.979511 0.921566 1 0 0.718788 ‐0.09531 ‐0.27759 ‐0.39415 ‐0.39899 ‐0.17615 ‐0.05767 0.251905 0.011784 0.290724 0.279916 0.41071 0.352788 0.359877 0.161361

FSE (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Costs ‐0.10546 ‐0.21588 ‐0.24324 ‐0.05404 ‐0.86884 ‐0.43732 ‐0.1798 0.584179 0.058224 ‐0.6729 0.395899 0.409643 0.409643 0.116972 0.755785 0.679676 0.780869 0.718788 0 1 ‐0.29409 ‐0.49164 ‐0.37541 ‐0.37854 ‐0.15991 ‐0.05279 0.230079 0.012887 0.317182 0.283728 0.492841 0.387499 0.440262 0.254397

Assigned/ 0.457391 ‐0.43442 ‐0.08404 ‐0.17044 0.22001 0.169356 0.054608 ‐0.28813 0.124143 0.039116 0.249327 0.26107 0.26107 0.055389 0.014559 ‐0.08549 0.011531 ‐0.09531 0 ‐0.29409 1 0.940804 0.144304 0.150541 0.085519 0.210589 ‐0.16199 ‐0.09845 ‐0.27393 ‐0.27302 0.08458 0.059865 0.193425 0.024882

Crew Chie 0.487462 ‐0.43821 0.039038 ‐0.08821 0.45404 0.234954 0.135951 ‐0.38187 0.080183 0.175881 0.166682 0.1669 0.1669 0.063456 ‐0.16431 ‐0.25017 ‐0.18032 ‐0.27759 0 ‐0.49164 0.940804 1 0.242338 0.249188 0.138964 0.22618 ‐0.20817 ‐0.11784 ‐0.2607 ‐0.26233 ‐0.0296 ‐0.02204 0.024192 ‐0.05893

Cann Rate 0.047312 0.070291 ‐0.0298 ‐0.11038 0.412656 0.160846 0.132311 ‐0.26045 0.018048 0.454781 ‐0.27038 ‐0.25514 ‐0.25514 ‐0.21615 ‐0.37187 ‐0.39769 ‐0.36831 ‐0.39415 0 ‐0.37541 0.144304 0.242338 1 0.994707 0.664373 0.769913 ‐0.35312 ‐0.18767 ‐0.21766 ‐0.2581 ‐0.11913 ‐0.08824 ‐0.21914 0.016424

Cann Rate 0.065229 0.050141 ‐0.01111 ‐0.09575 0.412778 0.171164 0.113814 ‐0.26094 0.008222 0.445682 ‐0.26693 ‐0.25298 ‐0.25298 ‐0.2112 ‐0.37271 ‐0.40123 ‐0.36996 ‐0.39899 0 ‐0.37854 0.150541 0.249188 0.994707 1 0.691377 0.787862 ‐0.31121 ‐0.1552 ‐0.18842 ‐0.22126 ‐0.12583 ‐0.10277 ‐0.20993 0.003577

Cann Hour 0.001842 ‐0.01364 ‐0.00024 ‐0.05246 0.197312 ‐0.00379 0.064725 ‐0.02661 0.00982 0.241163 ‐0.09909 ‐0.09425 ‐0.09425 ‐0.10551 ‐0.14505 ‐0.17312 ‐0.14807 ‐0.17615 0 ‐0.15991 0.085519 0.138964 0.664373 0.691377 1 0.674209 ‐0.05723 ‐0.02984 0.026851 0.026967 ‐0.04999 ‐0.06561 ‐0.07273 0.084685

Canns (N) 0.1427 ‐0.16352 ‐0.10925 ‐0.12799 0.05224 0.022009 0.027921 ‐0.05837 0.042588 0.057956 0.050837 0.055132 0.055132 ‐0.02739 0.011942 ‐0.05852 0.01247 ‐0.05767 0 ‐0.05279 0.210589 0.22618 0.769913 0.787862 0.674209 1 ‐0.06133 0.024106 ‐0.04149 ‐0.03041 0.161973 0.009931 0.156253 0.188325

MTBF‐1 (In 0.049402 ‐0.07838 0.167231 0.219378 ‐0.31529 0.041761 ‐0.32179 0.123765 ‐0.0915 ‐0.38891 0.161514 0.12695 0.12695 0.202706 0.235871 0.275275 0.215882 0.251905 0 0.230079 ‐0.16199 ‐0.20817 ‐0.35312 ‐0.31121 ‐0.05723 ‐0.06133 1 0.804468 0.538537 0.756015 ‐0.30038 ‐0.42484 0.069131 ‐0.28745

MTBF‐2 (In 0.154851 ‐0.05645 0.24883 0.305169 ‐0.1602 0.266625 ‐0.42118 ‐0.12003 ‐0.07268 ‐0.21407 ‐0.00171 ‐0.03023 ‐0.03023 0.098906 0.025836 0.032691 0.008863 0.011784 0 0.012887 ‐0.09845 ‐0.11784 ‐0.18767 ‐0.1552 ‐0.02984 0.024106 0.804468 1 0.157697 0.419905 ‐0.33738 ‐0.59512 0.107132 ‐0.26566

MTBM‐6 (N ‐0.23812 0.059511 0.100126 0.087825 ‐0.16464 ‐0.30155 0.141789 0.379404 ‐0.14625 ‐0.21959 0.139336 0.137653 0.137653 0.063335 0.20645 0.282862 0.210924 0.290724 0 0.317182 ‐0.27393 ‐0.2607 ‐0.21766 ‐0.18842 0.026851 ‐0.04149 0.538537 0.157697 1 0.950101 ‐0.00848 0.092289 ‐0.32002 ‐0.33443

MTBM Tot ‐0.17131 0.032828 0.156875 0.155494 ‐0.18329 ‐0.20593 0.012982 0.3186 ‐0.15379 ‐0.27181 0.151843 0.136078 0.136078 0.12143 0.20624 0.285539 0.199614 0.279916 0 0.283728 ‐0.27302 ‐0.26233 ‐0.2581 ‐0.22126 0.026967 ‐0.03041 0.756015 0.419905 0.950101 1 ‐0.14923 ‐0.13912 ‐0.26239 ‐0.37709

Failures ‐  ‐0.018 ‐0.21693 ‐0.28025 ‐0.18847 ‐0.46189 ‐0.3455 0.200598 0.311038 0.065797 ‐0.35624 0.30805 0.321497 0.321497 0.09293 0.468481 0.38767 0.485002 0.41071 0 0.492841 0.08458 ‐0.0296 ‐0.11913 ‐0.12583 ‐0.04999 0.161973 ‐0.30038 ‐0.33738 ‐0.00848 ‐0.14923 1 0.836033 0.6935 0.687456

Failures ‐ 2 ‐0.09787 ‐0.12419 ‐0.26146 ‐0.21138 ‐0.3108 ‐0.36918 0.326568 0.312985 0.012381 ‐0.24348 0.252104 0.278987 0.278987 0.006487 0.372545 0.32078 0.397284 0.352788 0 0.387499 0.059865 ‐0.02204 ‐0.08824 ‐0.10277 ‐0.06561 0.009931 ‐0.42484 ‐0.59512 0.092289 ‐0.13912 0.836033 1 0.357781 0.486173

Total Actio 0.224662 ‐0.34814 ‐0.2199 ‐0.09586 ‐0.57594 ‐0.08 ‐0.18855 0.093954 0.177174 ‐0.45391 0.302508 0.285361 0.285361 0.220323 0.477896 0.366339 0.471569 0.359877 0 0.440262 0.193425 0.024192 ‐0.21914 ‐0.20993 ‐0.07273 0.156253 0.069131 0.107132 ‐0.32002 ‐0.26239 0.6935 0.357781 1 0.729155

TMMHs (H 0.024345 ‐0.05774 ‐0.32699 ‐0.27246 ‐0.23636 ‐0.10987 0.096926 0.00252 0.199702 ‐0.06387 0.077324 0.064842 0.064842 0.112517 0.19329 0.166252 0.188036 0.161361 0 0.254397 0.024882 ‐0.05893 0.016424 0.003577 0.084685 0.188325 ‐0.28745 ‐0.26566 ‐0.33443 ‐0.37709 0.687456 0.486173 0.729155 1
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As stated in the methodology section, the variables greater than .5 or less than -.5 

would be considered critical variables and added to the regression model.  The critical 

variables identified from this analysis are as follows: Depot %, MC Rate, NMCM Rate, 

Assigned/Authorized %, and Crew Chief %.  Additionally, to ensure none of the 

variables that could be used as explanatory variables in the regression model were 

possibly left out, a bivariate analysis was conducted on each of the variables.  Figure 8 

illustrates an example.  Bivariate analysis results are found in Appendix A.   
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   Figure 8.  Bivariate Analysis of NMCB 

Due to the relatively strong R2 value and the low Prob > F value indicating a 

possible explanatory variable, five more variables were added as independent variables 

for the regression model.  The following variables were those selected from the bivariate 
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analysis:  NMCB Rate, Total Actions, Sorties Flown, Sorties Scheduled, and MTBM-6 

(no defects).   

Regression Models 

 The initial regression model evaluated contained one dependent variable, 

Availability %, and ten independent variables as mentioned in the previous section.  As 

stated in the methodology section, a model with a low MSE, a R2 greater than .80, rejects 

the null hypothesis, and has a VIF score of less than 5 is the ideal model to utilize for this 

research.  Equation 6 depicts the initial regression model created. 

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + β9X9 + β10X10          (6) 

Predicted Y:  Aircraft Availability  

Independent Variables (Effects):    X1 = Depot % 
              X2 = MC Rate 
              X3 = NMCB Rate 
              X4 = NMCM Rate 
              X5 = Sorties Flown 
              X6 =  Sorties Scheduled 
              X7 = Assign/Authorized Rate 
              X8 = Crew Chiefs Assigned/Authorized Rate 
              X9 = MTBM-6 (No Defects) 
              X10 = Total Number of Actions 

The initial regression model was run utilizing JMP® software incorporating 96 

months of data for each of the variables.  The data utilized was for Fairchild AFB from 

FY2002 – 2010.  The result was a R2 of .978512 and an MSE of .007527, but there was 

strong indication of multicollinearity due to high VIF scores.  Additionally some of the P-

values of the individual variables were higher than .05 indicating insignificance towards a 

relationship with the dependent variable of AA.  Figure 9 shows the results of the initial 

regression model.   
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                                              Figure 9.  Initial Regression Model Analysis 

The following variables were removed from the initial regression model due to 

high P-values:  Total Actions (.8054), MTBM-6 (.4783), and NMCM (.9921).  

Additionally, the following variables had VIF scores higher than 5 and were removed 
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individually, while the model was run again after each removal until the VIF scores were 

below 5 and the model with the best R2 was kept for further evaluation:  MC Rate (7.89), 

Sorties Scheduled (zeroed), Assigned/Authorized (14.70), and Crew Chiefs (16.73) were 

the variables removed due to high VIF scores.  The model was run multiple times to 

determine the best fit, and eventually the final regression model utilized for evaluation 

contained four independent variables.  During the course of multiple runs, one of the 

initial variables removed, NMCM, was reinstated due to the strong fit with the final 

regression model.  Equation 7 illustrates the final regression model.  

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4                  (7) 

Predicted Y:  Aircraft Availability  

Independent Variables (Effects):    X1 = Depot % 
              X2 = MC Rate 
              X3 = NMCM Rate 
              X4 = Sorties Flown 
               
     
The final model had a R2 of .97412 and a MSE of .008031.  All the VIF scores were 

below 5 and the P-values were also all below .05.  Additionally, the effects test revealed 

an F-statistic for each variable above zero, ultimately rejecting the null hypothesis.  

Figure 10 reveals the analysis of the final regression model. 
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                                        Figure 10.  Final Regression Model Analysis 

The final regression model’s R2 of .97412 is unusually high.  An R2 of 1 indicates 

that a regression line perfectly fits the data, and in the case of this final regression model 
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only .03 of the dependent variable’s variation can’t be explained by the independent 

variables.  The contributing factors to such a high R2 are the independent variables that 

showed a strong correlation with the dependent variable, AA, and were utilized in the 

final regression model.  The two biggest contributors to the high R2 are Depot % and MC 

Rate.  The Depot % of a unit plays a critical role into how many aircraft will be available 

for operations, and the MC Rate is part of the AA formula.  Some of the data utilized to 

determine the MC Rate is also utilized to determine the AA rate.  Due to their close 

relationship with AA, these two independent variables caused the R2 to be unusually 

high.  It was determined to keep these two independent variables in the final regression 

model, not due to the high R2, but rather to quantify how much these independent 

variables influence the AA rate and provide useful information when analyzing these key 

metrics.   

 The final regression model was then evaluated for the random error term ε, step 4 

of the regression model analysis stated in the methodology section.  A thorough 

examination revealed a standard deviation of .0080 and all data points were within three-

standard deviations from the mean, as seen in the figure above.  Additionally, there was 

no evidence of curve-linear trends and all data portrayed normal distribution.  Since the 

final regression model passed the first four steps of the regression model analysis, the 

model was tested for usefulness by predicting the test data.   

Validation of the Final Regression Model 

 To test the usefulness and to validate the model, 24 months of data (20 percent) 

was set aside to utilize as test data for the final regression model.  This test data was for 

Fairchild AFB from FY2010 – 2012.  The test data was added to the existing data that 
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was used to build the regression models.  Once the test data was added, the final 

regression model was run in JMP® and the Predicted Availability rates along with 

Individual Confidence Intervals was selected as an option from the program.  This 

process generated individual prediction intervals along with a prediction Availability rate 

for the dependent variable at each of the 24-month periods. Theoretically, the final 

regression model should have been able to predict AA rates within the prediction 

intervals (at 95% confidence) 95% of the time.  If the actual Availability rate for the 

selected month is within the predicted confidence interval, then the model has predicted 

the Availability rate correctly.  The test results from this analysis are displayed in Table 

11.   

                       Table 11.  Final Regression Model Sensitivity Analysis 

 
 

Empirical results show the final regression model was able to predict the 

Availability rate 24 out of the 24 months or 100% of the time, which is well within the 

confidence interval level.  The final model also had a fairly low Mean Absolute 

Percentage Error (MAPE) of only .5825; this is the average difference of the actual 

Date Lower 95% Confidence Interval (%) Actual Available (%) Predicted Available (%) Upper 95% Confidence Interval (%) Absolute Percentage Error

Oct‐10 59.61% 61.30% 61.25% 62.89% 0.05

Dec‐10 59.14% 61.40% 60.79% 62.43% 0.61

Jan‐11 58.10% 59.70% 59.75% 61.41% 0.05

Feb‐11 55.18% 58.00% 56.83% 58.47% 1.17

Mar‐11 59.30% 61.00% 60.94% 62.58% 0.06

Apr‐11 60.30% 62.90% 61.97% 63.64% 0.93

May‐11 65.71% 66.60% 67.37% 69.03% 0.77

Jun‐11 65.83% 67.00% 67.50% 69.17% 0.50

Jul‐11 65.07% 65.00% 66.76% 68.46% 1.76

Aug‐11 74.78% 76.80% 76.44% 78.11% 0.34

Sep‐11 73.81% 75.30% 75.47% 77.13% 0.17

Oct‐11 73.27% 75.20% 74.92% 76.56% 0.28

Nov‐11 74.69% 76.90% 76.33% 77.97% 0.57

Dec‐11 74.66% 77.10% 76.32% 77.98% 0.78

Jan‐12 70.08% 72.30% 71.75% 73.43% 0.55

Feb‐12 72.36% 74.40% 74.07% 75.77% 0.33

Mar‐12 74.67% 76.30% 76.33% 77.99% 0.03

Apr‐12 74.81% 77.80% 76.46% 78.12% 1.34

May‐12 69.60% 72.30% 71.24% 72.88% 1.06

Jun‐12 70.57% 73.10% 72.20% 73.83% 0.90

Jul‐12 69.10% 71.90% 70.73% 72.36% 1.17

Aug‐12 66.72% 68.20% 68.35% 69.99% 0.15

Sep‐12 67.66% 68.90% 69.31% 70.97% 0.41

MAPE = 0.5825
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Availability rate and the predicted Availability rate for the 24-month period.  

Additionally, the prediction confidence intervals had an average range of only 3.17%, 

which is a relatively small window to predict within when considering the prediction of a 

strategic metric such as AA that has so many different variables.   

From this final regression model, a tool was created to help predict aircraft 

availability utilizing the regression model formula.  This formula contains the four 

critical variables identified in the regression model along with the beta values for each 

independent variable in order to predict AA within a 95% confidence interval as shown 

from the test data.  Equation 8 highlights this formula. 

Y = .2344  +  -.7739X1  +  .6890X2  +  -.1410X3  +  .00004X4                       (8) 

Predicted Y:  Aircraft Availability  

Independent Variables (Effects):    X1 = Depot % 
              X2 = MC Rate 
              X3 = NMCM Rate 
              X4 = Sorties Flown 
               

From this formula, the AA predictive tool was created from Excel.  To build this 

predictive AA tool, a modified version of linear programming was utilized.  First the AA 

rate, also known as the objective function, was subject to the independent variables and 

their beta values, which are constant.  The constraints of this formula are the rates or 

numbers of the independent variables, which are then, multiplied in a linear fashion with 

the beta values of the independent variables.  The end product is the AA rate determined 

by the rates or numbers of the independent variables.  Upper and lower bounds were 

inserted into the formula, but play no bearing since the formula is not optimized utilizing 

Solver in Excel.  The reason Solver isn’t utilized is due to the software tries to optimize 
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only one or two of the independent variables and leaves the other variables at zero, which 

isn’t realistic or possible.   

In this tool, one constraint (rate/number) can be changed at a time, or a 

combination of the constraints can be changed to include all four constraints at once.  

Due to the strong relationship of Depot % and MC Rate to AA, a change of 1.5% in each 

of these rates will change the AA rate by 1%.  A change of 7% in the NMCM rate results 

in a 1% change in the AA rate, and a change of 250 in Sorties Flown results in a 1% 

change in the AA rate.  A change in all four independent variable’s rates/numbers has the 

biggest impact on the AA rate.  A change in the Depot % and the MC Rate has the 

biggest return on investment.  In the end, this tool predicts what the AA rate will be from 

what the independent variables rates/numbers are.  Ultimately, maintenance leaders can 

insert applicable rates/numbers for the independent variables to determine what rate or 

sorties flown the unit would need to attain in order to achieve a certain AA goal or 

standard.  Figure 11 illustrates the AA predictive tool. 

 
                                Figure 11.  AA Predictive Tool 

Depot % 0.13

MC Rate 0.9

NMCM Rate 0.05

Sorties Flown  500

AA Rate 0.77

Rules of Thumb for determining AA rate from the independent variables

* A change of 250 in Sorties Flown equals a 1% change in AA Rate

Aircraft Availability Predictive Tool

** Changing all four variables at once has the biggest impact to AA rate

** Changing Depot % and MC Rate has the biggest return on investment

* A change of 1.5% in Depot % equals a 1% change in AA Rate

* A change of 1.5% in MC Rate equals a 1% change in AA Rate

* A change of 7% in NMCM Rate equals a 1% change in AA Rate
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Theoretically, this AA predictive tool has the potential for maintenance leaders to 

utilize as a mechanism for predicting AA, but there are many factors that must be 

examined and explained about this research, which takes place in Chapter V. 

Chapter Summary 

   Analysis and the results of the data collected were discussed in this chapter.  

First, an in-depth look into correlation analysis was reviewed.  This process was utilized 

to identify the critical variables with a potential relationship with AA.  Next, an overview 

of the initial regression model built and the process used to simplify and strengthen the 

model into the final regression model was illustrated.  Finally, validation and usefulness 

of the final regression model was examined utilizing the test data set aside from FY2010 

– 2012, and a predictive tool was created utilizing the final multiple regression formula.  

Chapter V answers the research questions, address limitations and implications of the 

final regression model, and highlights suggestions for further actions and research on this 

topic.   
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V.  Conclusions and Recommendations 

Chapter Overview 

In this final chapter, the first area discussed is answering the investigative 

questions that were raised in Chapter I.  Next, an introspective review of the limitations 

and significance of this research and the final regression model and predictive tool is 

discussed.  Finally, suggestions on future actions and research of this topic are 

highlighted. 

Investigative Questions 

1.   What is the current AMC AA standard for the KC-135R? 

 The AMC AA standard for the KC-135R is currently 83.7%.  This information 

was attained from AMC/A4 along with other vital information concerning fleet 

availability.  Currently, the attainable KC-135R AA rate is 72.1%, which equates to 299 

aircraft from a total inventory of 414.  To attain the AMC AA standard, 347 aircraft must 

be mission capable and available for operations.  Due to this shortage, AMC/A4 has 

launched many initiatives within their AA improvement program to aid in reaching the 

AA standard.  The goal of this research was to provide some more insight into what 

variables affect AA and provide a tool to help decision makers focus their efforts when 

determining what actions are needed to improve the AA rate.   

2.  What is the KC-135R AA standard based off of and is it mission linked?   

 The answer to this investigative question was found during literature review of 

Major Waller’s research of AA and operational requirements.  The KC-135R AA 

standard, along with all other aircraft, is based off of operational requirements set forth 
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by AFI 21-103, Equipment Inventory, Status, and Utilization Reporting.  As discussed in 

Chapter II, the operational requirement is derived from many factors that are included in 

the operational requirement equation that ultimately defines how many aircraft are 

required from the total inventory to meet operations.  Due to the relatively new existence 

of the AA standard within AFI 21-103, many personnel are not aware of this process and 

understand how the AA standard is linked with operational requirements.  This equation 

within AFI 21-103 legitimizes the AA standard and provides the basis for trade-offs 

between operational requirements and maintenance capability.    

3.  What quantifiable correlated variables affect the KC-135R AA rate?   

Out of the 130 months of base-level data pulled from the five different sources, 35 

different variables were established to determine what variables affect the KC-135R rate.  

Utilizing the methodology discussed in Chapter III, 10 independent variables were 

identified as variables that affect the AA rate.  During the strengthening and 

simplification process for the multiple regression analysis, four independent variables 

were identified as the most critical variables that affect the KC-135R AA rate.  As 

previously mentioned in Chapter IV, those variables are Depot %, MC Rate, NMCM 

Rate and Sorties Flown.  Many of these variables are already known as critical variables, 

but this research quantifies how strong of a relationship they have with AA. 

Although the analysis shows a strong relationship between the independent and 

dependent variables, the limitations of this research must be restated that the research was 

scoped down to only one base, Fairchild AFB, and bounded to the data available from the 

sources chosen and the time frame selected.  There were many metrics that could have 
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possibly demonstrated a relationship with AA that were not available due to limited or 

zero information available for the base or time frame selected.  

4.  Are the KC-135R AA rates influenced by changes in the O&M budget? 

As it has been stated many times before, “money is the bottom line, and it makes 

the world go around.”  Unfortunately from this research, the budget/costs associated with 

Fairchild AFB during the timeframe of FY2002 – 2012 did not show a correlation with 

the KC-135R AA rate.  This was largely due to the fact the budget/costs data was only 

available in yearly increments.  The data was manipulated in order to correlate the data 

with AA and this limitation created equal parts of the budget/costs across all 12 data 

points within a year.  This unrealistically kept the budget/costs constant as changes 

occurred to the AA rate. This was the method chosen in order to utilize the budget/costs 

data and not diminish the remaining 34 variables utilized for this research.  This was a 

huge limitation to this research and is discussed further in this chapter.  The O&M budget 

plays a vital role in the amount of aircraft available, but the key is to figure how much of 

an influence and what are the trade-offs.  Unfortunately this research was not able to 

reveal that key and unlock the answer.  

5. What model best predicts KC-135R AA and what is the result?  

 The final regression model demonstrated the strongest relationship with the 

remaining four independent variables to AA.  This model clearly showed the ability to 

predict AA rates with a small mean absolute percentage error between the actual rate and 

the predicted rate in addition to predicting the AA rate 100% of the time within a 

relatively small window of ± 3.17.  As stated previously, this model has its limitations 

due to the fact the data was only pulled from one base and was not all inclusive.  The 
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result is a model and a predictive tool that has the potential to aid maintenance decision 

makers on what areas to best concentrate on in order to improve aircraft availability in 

order to meet operational requirements.   

Limitations and Significance of the Research 

As just previously mentioned, this research was scoped down to the tactical level 

of assessing AA, and is only an accurate portrayal of Fairchild AFB.  The final regression 

model can’t be utilized across all platforms or even across other KC-135R bases 

expecting accurate results.  Additionally, this research was limited to the data 

available/extracted and surely there are other credible variables that could influence AA.  

Lastly, the O&M budget was manipulated in a way that didn’t allow for accurate 

correlation analysis with AA.  With that being stated, this research does offer the 

methodology for any base to duplicate and create a final multiple regression model and 

predictive AA tool utilizing the data from that base.  This methodology reveals tactics, 

techniques and procedures utilized at the base level and enables that data to play a critical 

part of identifying the exact variables that affect AA at that specific base vice possibly 

being overshadowed at the MAJCOM or fleet level.   

As aforementioned, the critical variables of Depot %, MC Rate, NMCM Rate and 

Sorties Flown identified in the final regression model are already known as key variables 

of AA, but this research demonstrates they’re the most critical variables and quantifies by 

how much.  Lastly, this research offers Fairchild AFB leadership a predictive AA tool 

that can be utilized as decision support system to ascertain where resources should be 

focused to increase aircraft availability in order to meet operational requirements.   
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Recommendations for Action and Future Research 

The primary recommendation for action is for AMC to collaborate with AFMC 

and HAF/FM to establish a methodology to accurately determine O&M budget and costs 

at the base level on a monthly basis.  This would enable a realistic and precise correlation 

analysis with AA and provide the needed insight of how much the O&M budget 

influences AA.   

Additionally, implement and evaluate the usability of this final regression model 

and predictive AA tool at Fairchild AFB.  If the test drive proves valuable and meets the 

user’s needs then use this research as the methodology to create a multiple regression 

model and predictive AA tool at other KC-135R bases.   

 Lastly, expound this research to strategic airlift bases within AMC.  Use this 

methodology to create multiple regression models and predictive AA tools at the base 

level of those assets.  This could provide another credible source of information for 

decision makers to effectively and efficiently utilize their resources to accomplish the 

mission.  

Summary 

In today’s environment of less manning, older aircraft, and a shrinking budget, 

maintenance leaders must utilize all available tactics, techniques and procedures to 

improve the amount of aircraft available for operations.  This research solidifies and 

quantifies how important the basic variables of Depot%, MC Rate, NMCM Rate and 

Sorties Flown play a pivotal role in the strategic metric of AA, and arms maintenance 

leaders with another tool to improve the operations of their units.   
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Appendix A:  Results of Bivariate Analysis 
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Appendix B:  Quad Chart
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